LLaMA-Factory项目中的多GPU并行训练内存优化实践
2025-05-02 09:00:10作者:申梦珏Efrain
在大型语言模型训练过程中,内存管理是一个关键挑战,特别是在使用多GPU并行训练时。本文以LLaMA-Factory项目中的DPO(Direct Preference Optimization)训练为例,探讨如何有效解决CUDA内存不足的问题。
问题背景
当使用8块32GB V100 GPU进行DPO训练时,即使将每设备训练批量大小设置为1,仍然会遇到CUDA内存不足的错误。值得注意的是,相同的模型、数据和配置在单卡SFT(Supervised Fine-Tuning)训练中可以正常运行。
内存使用分析
从错误信息可以看出,GPU 3的总容量为31.74GB,其中1.41GB空闲。PyTorch已分配23.51GB内存,还有5.51GB保留但未分配。这表明存在内存碎片化问题。
解决方案
1. 精度格式优化
- 优先使用BF16而非FP16:在V100等较新GPU上,BF16格式通常更稳定且高效
- 混合精度训练:结合使用不同精度格式可以显著减少内存占用
2. 训练参数调整
- 减少序列长度:将cutoff_len从4096降低到2048可以大幅减少内存需求
- 优化批量大小:虽然每设备批量已设为1,但可尝试进一步降低或调整梯度累积步数
- 调整检查点频率:减少save_steps和logging_steps可以降低内存峰值
3. 内存管理技术
- 启用PyTorch的expandable_segments:通过设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True来减少内存碎片
- 使用torch.compile():这个优化器可以减少内存使用并提高计算效率
4. DeepSpeed配置优化
- 确保使用正确的DeepSpeed配置:特别是Zero3阶段的优化
- 合理配置offload参数:将部分计算卸载到CPU可以缓解GPU内存压力
实践建议
- 逐步增加并行度:先使用少量GPU进行测试,确认内存使用正常后再扩展到多卡
- 监控工具使用:训练前使用nvidia-smi检查GPU状态,确保没有残留进程占用内存
- 内存清理:定期清理无用的CUDA进程和缓存
总结
多GPU并行训练中的内存管理需要综合考虑精度格式、批量大小、序列长度和框架优化等多个因素。通过系统性的调整和优化,可以有效解决CUDA内存不足的问题,使大型语言模型的训练更加高效稳定。
对于LLaMA-Factory这类开源项目,理解其内存使用特性并针对性地优化配置,是成功进行大规模模型训练的关键所在。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143