LLaMA-Factory项目中的多GPU并行训练内存优化实践
2025-05-02 16:25:18作者:申梦珏Efrain
在大型语言模型训练过程中,内存管理是一个关键挑战,特别是在使用多GPU并行训练时。本文以LLaMA-Factory项目中的DPO(Direct Preference Optimization)训练为例,探讨如何有效解决CUDA内存不足的问题。
问题背景
当使用8块32GB V100 GPU进行DPO训练时,即使将每设备训练批量大小设置为1,仍然会遇到CUDA内存不足的错误。值得注意的是,相同的模型、数据和配置在单卡SFT(Supervised Fine-Tuning)训练中可以正常运行。
内存使用分析
从错误信息可以看出,GPU 3的总容量为31.74GB,其中1.41GB空闲。PyTorch已分配23.51GB内存,还有5.51GB保留但未分配。这表明存在内存碎片化问题。
解决方案
1. 精度格式优化
- 优先使用BF16而非FP16:在V100等较新GPU上,BF16格式通常更稳定且高效
- 混合精度训练:结合使用不同精度格式可以显著减少内存占用
2. 训练参数调整
- 减少序列长度:将cutoff_len从4096降低到2048可以大幅减少内存需求
- 优化批量大小:虽然每设备批量已设为1,但可尝试进一步降低或调整梯度累积步数
- 调整检查点频率:减少save_steps和logging_steps可以降低内存峰值
3. 内存管理技术
- 启用PyTorch的expandable_segments:通过设置环境变量PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True来减少内存碎片
- 使用torch.compile():这个优化器可以减少内存使用并提高计算效率
4. DeepSpeed配置优化
- 确保使用正确的DeepSpeed配置:特别是Zero3阶段的优化
- 合理配置offload参数:将部分计算卸载到CPU可以缓解GPU内存压力
实践建议
- 逐步增加并行度:先使用少量GPU进行测试,确认内存使用正常后再扩展到多卡
- 监控工具使用:训练前使用nvidia-smi检查GPU状态,确保没有残留进程占用内存
- 内存清理:定期清理无用的CUDA进程和缓存
总结
多GPU并行训练中的内存管理需要综合考虑精度格式、批量大小、序列长度和框架优化等多个因素。通过系统性的调整和优化,可以有效解决CUDA内存不足的问题,使大型语言模型的训练更加高效稳定。
对于LLaMA-Factory这类开源项目,理解其内存使用特性并针对性地优化配置,是成功进行大规模模型训练的关键所在。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350