LangChain项目中TypedDict与结构化输出的正确使用方式
在LangChain项目开发过程中,许多开发者会遇到结构化输出与TypedDict类型定义不匹配的问题。本文将通过一个典型案例分析问题根源,并给出正确的实现方案。
问题现象
开发者在使用LangChain的with_structured_output
功能时,期望得到一个符合TypedDict定义的结构化输出,但实际得到的却是包含额外类型信息的嵌套结构。具体表现为输出结果中包含了不必要的"type"和"properties"字段,而不是预期的扁平化键值对结构。
问题根源分析
经过深入调查,发现问题并非来自LangChain框架本身,而是由于开发者在使用API时的一个常见错误:在调用with_structured_output
方法时,错误地实例化了TypedDict类,即使用了SiteLinks()
而不是直接传递SiteLinks
类型。
TypedDict是Python的类型提示工具,用于定义字典的结构,它本身不应该被实例化。当开发者错误地实例化TypedDict并传递给结构化输出方法时,会导致框架无法正确识别预期的输出结构。
正确实现方案
以下是使用LangChain结构化输出的正确方式:
from typing import Optional
from typing_extensions import TypedDict
from langchain_openai import ChatOpenAI
class SiteLinks(TypedDict):
"URLs to extract from the web page"
legal_notice: Optional[str]
faq: Optional[str]
about_us: Optional[str]
# 正确用法:直接传递TypedDict类型
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, max_tokens=500)
structured_llm = llm.with_structured_output(SiteLinks)
最佳实践建议
-
类型定义清晰:确保TypedDict中的字段类型定义准确,特别是对于可选字段要使用Optional明确标注
-
避免实例化类型:记住TypedDict是类型提示工具,不是常规的数据类,不应实例化
-
测试验证:编写简单的断言测试验证输出结构是否符合预期
-
版本兼容性:虽然这个问题不是版本导致的,但保持LangChain及其相关依赖的最新版本仍是良好实践
总结
正确使用LangChain的结构化输出功能可以显著提升大语言模型输出的可靠性和可用性。关键在于理解TypedDict的本质作用以及它与常规字典的区别。通过遵循本文介绍的正确用法,开发者可以避免常见的陷阱,获得预期的结构化输出结果。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0125AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









