LangGraph项目0.2.61版本发布:消息处理与异步任务增强
LangGraph是一个用于构建复杂状态机和工作流的Python框架,特别适合开发需要多步骤决策和状态管理的AI应用。在最新的0.2.61版本中,项目团队对消息处理、异步任务执行和状态管理等方面进行了多项重要改进。
消息处理能力增强
新版本对add_messages函数进行了显著增强,新增了对OpenAI格式消息的支持。开发者现在可以通过设置format="langchain-openai"参数,自动将消息内容转换为与OpenAI API兼容的格式。这一改进特别适合需要与OpenAI模型集成的应用场景。
该功能能够智能处理不同类型的消息内容:
- 纯文本消息自动转换为字符串格式
- 包含富文本的内容会被转换为'text'块
- 图片等多媒体内容则转换为'image_url'块
值得注意的是,该功能需要配合langchain-core 0.3.11或更高版本使用。此外,函数现在支持作为部分函数调用,这为类型注解提供了更大的灵活性。
异步任务处理优化
task装饰器在本版本中得到了重写,现在支持更灵活的用法模式:
- 带参数的装饰器用法:
@task(...) - 无括号的直接装饰器用法:
@task - 对异步函数的自动检测和包装
改进后的装饰器能够更好地处理协程函数,并提供了更完善的类型提示,包括重载支持,这使得在IDE中获得更好的代码补全体验。函数签名也调整为接受*args和**kwargs,而不是单一输入参数,这更符合Python的惯用写法。
状态管理与通道处理
在状态管理方面,map_output_updates函数现在能够正确处理对同一通道的多次写入操作。通过引入Counter来检测重复更新,确保了在多节点同时写入同一通道时的数据一致性。
对于异步状态管理,AsyncPregelLoop的__aexit__方法改进了取消处理逻辑,现在能够更好地支持资源清理操作。特别是在处理数据库连接等资源时,能够确保在异常情况下也能正确释放资源。
类型系统改进
项目内部统一了TypedDict的使用方式,现在全部从typing_extensions导入,而不是直接使用typing模块。这一变化虽然对用户透明,但为项目未来的类型系统演进打下了更好的基础。
总结
LangGraph 0.2.61版本在消息处理、异步任务和状态管理等核心功能上进行了多项重要改进。这些变化不仅提升了框架的易用性,也为构建更复杂的AI工作流提供了更好的支持。特别是对OpenAI消息格式的原生支持,使得集成大型语言模型变得更加简单直接。对于正在使用或考虑使用LangGraph的开发者来说,这个版本值得关注和升级。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00