Stable Diffusion WebUI AMDGPU 项目在 RX580 显卡上的 ZLUDA 兼容性问题解决方案
问题背景
在 Windows 10 系统下使用 AMD RX580 显卡运行 Stable Diffusion WebUI AMDGPU 项目时,用户遇到了模型加载失败的问题。该项目旨在为 AMD 显卡用户提供更好的 Stable Diffusion 支持,而 ZLUDA 是一个允许 CUDA 代码在 AMD GPU 上运行的工具。
问题现象
当用户尝试在 RX580 显卡上使用 ZLUDA 运行 Stable Diffusion WebUI AMDGPU 时,虽然界面能够正常启动,但在加载模型检查点(checkpoint)时会出现以下关键错误:
- 设备初始化阶段报告"ZLUDA device failed to pass basic operation test"
- 模型加载过程中出现"RuntimeError: Expected all tensors to be on the same device"错误
- 最终导致"Stable diffusion model failed to load"
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
Polaris 架构显卡的内存管理问题:RX580 采用的 Polaris 架构在驱动程序处理系统内存时存在已知问题,容易触发内存不足错误。
-
Torch 版本兼容性问题:最新版本的 PyTorch 与 RX580 显卡的 ZLUDA 实现存在兼容性问题。
-
设备一致性检查失败:模型加载过程中,系统检测到张量被分散在不同设备(CUDA 和 CPU)上,违反了 PyTorch 的运行要求。
解决方案
方案一:使用专业版驱动程序
- 完全卸载现有的 AMD 显卡驱动(推荐使用 Display Driver Uninstaller)
- 安装最新版的 AMD PRO Edition 专业驱动程序
- 重新安装 HIP SDK
方案二:降级 PyTorch 版本(推荐)
对于大多数 RX580 用户,降级 PyTorch 和相关库版本是最有效的解决方案:
- 在虚拟环境中执行以下命令降级相关包:
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118 - 确保安装的版本完全匹配
- 清理并重建 Python 虚拟环境
验证方法
用户可以通过以下方式验证 ZLUDA 是否正常工作:
- 使用 Blender 3D 等支持 CUDA 的应用程序进行渲染测试
- 在 Stable Diffusion WebUI 中尝试生成简单图像
- 检查系统日志中是否还有设备不匹配的错误
技术建议
- 对于 Polaris 架构显卡用户,建议始终使用经过验证的 Torch 版本组合
- 在出现内存相关错误时,可以尝试添加
--medvram或--lowvram参数启动 WebUI - 定期检查 AMD 专业驱动程序的更新,这些驱动通常对专业应用有更好的支持
总结
AMD RX580 显卡用户在使用 Stable Diffusion WebUI AMDGPU 项目时,通过合理选择驱动版本和 PyTorch 版本组合,完全可以实现稳定的 ZLUDA 支持。特别是降级 PyTorch 到 2.0.1 版本配合 torchvision 0.15.2 的方案,在实际使用中表现最为稳定。这一解决方案不仅适用于 Stable Diffusion WebUI AMDGPU 项目,也可应用于其他需要 ZLUDA 支持的 AI 绘画工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00