DDD实践指南:角色、命令与事件映射方法详解
2025-06-07 02:30:44作者:温艾琴Wonderful
引言
在领域驱动设计(DDD)实践中,理解业务场景中的角色、命令和事件关系至关重要。本文将以咖啡店业务场景为例,深入讲解如何通过事件风暴(Event Storming)方法进行领域建模,帮助开发者掌握DDD的核心建模技术。
业务事件识别
事件发现的基本原则
- 使用通用语言:与领域专家沟通时,应采用业务人员能理解的术语,而非技术术语
- 关注核心价值:只识别对业务有实质影响的事件
- 明确触发与结果:每个事件都应明确其触发条件和产生的结果
咖啡店典型事件示例
在咖啡店场景中,我们可以识别出以下关键业务事件:
- 菜单展示
- 顾客点单(2杯美式咖啡)
- 支付完成
- 收据接收
- 座位占用
- 订单接收
- 咖啡制作完成
- 顾客离店
- 餐桌清理
这些事件应按时间顺序排列,形成完整的业务流程时间线。
命令与事件映射
命令的定义与特征
命令(Command)是触发事件的动作或意图,具有以下特点:
- 使用现在时态表示
- 通常由特定角色发起
- 可能导致一个或多个事件
在咖啡店场景中,典型的命令包括:
- 顾客点单
- 收银员处理支付
- 咖啡师开始制作
- 服务员清理餐桌
映射关系可视化
通过建立命令与事件的映射关系,可以清晰地看到业务流程中的因果关系。例如:
- "顾客点单"命令 → 触发"订单接收"事件
- "处理支付"命令 → 触发"支付完成"事件
角色识别与分析
角色的定义
角色(Role)是业务流程中的关键参与者,可以是:
- 人员(如顾客、员工)
- 系统(如支付系统、库存系统)
咖啡店核心角色
在咖啡店场景中,主要角色包括:
- 顾客:发起点单、支付等行为
- 收银员:处理订单和支付
- 咖啡师:负责饮品制作
- 服务员:处理餐桌服务
异常事件处理
风险事件识别
在业务流程中,需要考虑可能出现的异常情况,例如:
- 顾客未提供桌号就点单
- 咖啡师制作错误订单
- 支付失败
- 座位冲突
异常处理策略
对于识别出的风险事件,应采取相应措施:
- 使用红色标签标记风险事件
- 分析事件对客户体验的影响
- 设计预防或补救方案
聚合设计
聚合的概念
聚合(Aggregate)是DDD中的核心概念,具有以下特征:
- 是一组相关命令和事件的逻辑集合
- 负责接受或拒绝命令
- 保证业务规则的一致性
聚合设计方法
- 初期聚焦:先收集事件和命令,暂不急于命名聚合
- 逐步识别:随着场景分析的深入,聚合边界会自然显现
- 命名规范:
- 使用名词(如"订单")
- 使用动名词(如"订单处理")
限界上下文划分
上下文形成原则
当多个聚合表现出高度内聚性时,可将其划入同一限界上下文(Bounded Context)。判断标准包括:
- 命令A触发事件A
- 事件A产生视图A
- 视图A是执行命令B的条件
- 命令A和B应属于同一模块
上下文映射关系
根据Eric Evans的理论,限界上下文之间存在9种核心关系类型,包括:
- 合作关系
- 客户-供应商关系
- 遵奉者关系
- 防腐层
- 开放主机服务
- 发布语言
- 共享内核
- 分离方式
- 大泥球
理解这些关系有助于设计清晰的系统边界和集成方式。
实践建议
- 可视化工具:使用便利贴等工具直观展示事件、命令和角色关系
- 迭代优化:多次演练业务场景,逐步完善模型
- 团队协作:鼓励领域专家和开发人员共同参与建模
- 关注异常:特别关注高风险路径和异常情况
通过以上方法,团队可以建立起清晰的领域模型,为后续的系统设计和开发奠定坚实基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140