DDD实践指南:角色、命令与事件映射方法详解
2025-06-07 07:11:14作者:温艾琴Wonderful
引言
在领域驱动设计(DDD)实践中,理解业务场景中的角色、命令和事件关系至关重要。本文将以咖啡店业务场景为例,深入讲解如何通过事件风暴(Event Storming)方法进行领域建模,帮助开发者掌握DDD的核心建模技术。
业务事件识别
事件发现的基本原则
- 使用通用语言:与领域专家沟通时,应采用业务人员能理解的术语,而非技术术语
- 关注核心价值:只识别对业务有实质影响的事件
- 明确触发与结果:每个事件都应明确其触发条件和产生的结果
咖啡店典型事件示例
在咖啡店场景中,我们可以识别出以下关键业务事件:
- 菜单展示
- 顾客点单(2杯美式咖啡)
- 支付完成
- 收据接收
- 座位占用
- 订单接收
- 咖啡制作完成
- 顾客离店
- 餐桌清理
这些事件应按时间顺序排列,形成完整的业务流程时间线。
命令与事件映射
命令的定义与特征
命令(Command)是触发事件的动作或意图,具有以下特点:
- 使用现在时态表示
- 通常由特定角色发起
- 可能导致一个或多个事件
在咖啡店场景中,典型的命令包括:
- 顾客点单
- 收银员处理支付
- 咖啡师开始制作
- 服务员清理餐桌
映射关系可视化
通过建立命令与事件的映射关系,可以清晰地看到业务流程中的因果关系。例如:
- "顾客点单"命令 → 触发"订单接收"事件
- "处理支付"命令 → 触发"支付完成"事件
角色识别与分析
角色的定义
角色(Role)是业务流程中的关键参与者,可以是:
- 人员(如顾客、员工)
- 系统(如支付系统、库存系统)
咖啡店核心角色
在咖啡店场景中,主要角色包括:
- 顾客:发起点单、支付等行为
- 收银员:处理订单和支付
- 咖啡师:负责饮品制作
- 服务员:处理餐桌服务
异常事件处理
风险事件识别
在业务流程中,需要考虑可能出现的异常情况,例如:
- 顾客未提供桌号就点单
- 咖啡师制作错误订单
- 支付失败
- 座位冲突
异常处理策略
对于识别出的风险事件,应采取相应措施:
- 使用红色标签标记风险事件
- 分析事件对客户体验的影响
- 设计预防或补救方案
聚合设计
聚合的概念
聚合(Aggregate)是DDD中的核心概念,具有以下特征:
- 是一组相关命令和事件的逻辑集合
- 负责接受或拒绝命令
- 保证业务规则的一致性
聚合设计方法
- 初期聚焦:先收集事件和命令,暂不急于命名聚合
- 逐步识别:随着场景分析的深入,聚合边界会自然显现
- 命名规范:
- 使用名词(如"订单")
- 使用动名词(如"订单处理")
限界上下文划分
上下文形成原则
当多个聚合表现出高度内聚性时,可将其划入同一限界上下文(Bounded Context)。判断标准包括:
- 命令A触发事件A
- 事件A产生视图A
- 视图A是执行命令B的条件
- 命令A和B应属于同一模块
上下文映射关系
根据Eric Evans的理论,限界上下文之间存在9种核心关系类型,包括:
- 合作关系
- 客户-供应商关系
- 遵奉者关系
- 防腐层
- 开放主机服务
- 发布语言
- 共享内核
- 分离方式
- 大泥球
理解这些关系有助于设计清晰的系统边界和集成方式。
实践建议
- 可视化工具:使用便利贴等工具直观展示事件、命令和角色关系
- 迭代优化:多次演练业务场景,逐步完善模型
- 团队协作:鼓励领域专家和开发人员共同参与建模
- 关注异常:特别关注高风险路径和异常情况
通过以上方法,团队可以建立起清晰的领域模型,为后续的系统设计和开发奠定坚实基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
368
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882