CSWin Transformer 使用教程
项目介绍
CSWin Transformer(Cross-Shaped Window Transformer)是由微软研究院开发的一种高效的视觉Transformer模型。它通过引入交叉形状的窗口自注意力机制,显著降低了计算复杂度,同时保持了强大的建模能力。CSWin Transformer适用于多种视觉任务,包括图像分类、目标检测和语义分割。
项目快速启动
环境准备
首先,确保你已经安装了Python和PyTorch。然后,克隆CSWin Transformer的GitHub仓库并安装所需的依赖包。
git clone https://github.com/microsoft/CSWin-Transformer.git
cd CSWin-Transformer
bash install_req.sh
训练模型
以下是一个简单的训练脚本示例,用于训练CSWin Transformer模型进行图像分类任务。
bash train.sh 8 --data <data_path> --model CSWin_64_12211_tiny_224 -b 256 --lr 2e-3 --weight-decay 0.05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.2
微调模型
如果你已经有了预训练模型,可以使用以下脚本进行微调。
bash finetune.sh 8 --data <data_path> --model CSWin_96_24322_base_384 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 384 --warmup-epochs 0 --model-ema-decay 0.9998 --finetune <pretrained_model_path> --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1
应用案例和最佳实践
图像分类
CSWin Transformer在ImageNet-1K数据集上表现出色,可以在较少的计算资源下达到高精度。以下是一个使用CSWin Transformer进行图像分类的示例代码。
import torch
from cswin_transformer import CSWinTransformer
# 加载预训练模型
model = CSWinTransformer(pretrained=True)
# 加载图像
image = torch.randn(1, 3, 224, 224)
# 前向传播
output = model(image)
# 输出分类结果
print(output)
目标检测
CSWin Transformer也可以用于目标检测任务。以下是一个使用CSWin Transformer作为骨干网络的Mask R-CNN示例。
from detectron2.modeling import build_model
from detectron2.config import get_cfg
from detectron2 import model_zoo
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.BACKBONE.NAME = "build_cswin_fpn_backbone"
model = build_model(cfg)
典型生态项目
Detectron2
Detectron2是Facebook AI Research推出的一个目标检测和分割框架,支持多种模型和算法。CSWin Transformer可以作为其骨干网络,提升检测和分割性能。
MMDetection
MMDetection是一个基于PyTorch的开源目标检测工具箱,支持多种检测模型。CSWin Transformer可以集成到MMDetection中,用于各种视觉任务。
TIMM
TIMM(PyTorch Image Models)是一个包含多种图像模型的库,CSWin Transformer可以作为其中的一种模型,方便用户进行图像分类任务。
通过以上教程,你可以快速上手CSWin Transformer,并在各种视觉任务中应用它。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00