CSWin Transformer 使用教程
项目介绍
CSWin Transformer(Cross-Shaped Window Transformer)是由微软研究院开发的一种高效的视觉Transformer模型。它通过引入交叉形状的窗口自注意力机制,显著降低了计算复杂度,同时保持了强大的建模能力。CSWin Transformer适用于多种视觉任务,包括图像分类、目标检测和语义分割。
项目快速启动
环境准备
首先,确保你已经安装了Python和PyTorch。然后,克隆CSWin Transformer的GitHub仓库并安装所需的依赖包。
git clone https://github.com/microsoft/CSWin-Transformer.git
cd CSWin-Transformer
bash install_req.sh
训练模型
以下是一个简单的训练脚本示例,用于训练CSWin Transformer模型进行图像分类任务。
bash train.sh 8 --data <data_path> --model CSWin_64_12211_tiny_224 -b 256 --lr 2e-3 --weight-decay 0.05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.2
微调模型
如果你已经有了预训练模型,可以使用以下脚本进行微调。
bash finetune.sh 8 --data <data_path> --model CSWin_96_24322_base_384 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 384 --warmup-epochs 0 --model-ema-decay 0.9998 --finetune <pretrained_model_path> --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1
应用案例和最佳实践
图像分类
CSWin Transformer在ImageNet-1K数据集上表现出色,可以在较少的计算资源下达到高精度。以下是一个使用CSWin Transformer进行图像分类的示例代码。
import torch
from cswin_transformer import CSWinTransformer
# 加载预训练模型
model = CSWinTransformer(pretrained=True)
# 加载图像
image = torch.randn(1, 3, 224, 224)
# 前向传播
output = model(image)
# 输出分类结果
print(output)
目标检测
CSWin Transformer也可以用于目标检测任务。以下是一个使用CSWin Transformer作为骨干网络的Mask R-CNN示例。
from detectron2.modeling import build_model
from detectron2.config import get_cfg
from detectron2 import model_zoo
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.BACKBONE.NAME = "build_cswin_fpn_backbone"
model = build_model(cfg)
典型生态项目
Detectron2
Detectron2是Facebook AI Research推出的一个目标检测和分割框架,支持多种模型和算法。CSWin Transformer可以作为其骨干网络,提升检测和分割性能。
MMDetection
MMDetection是一个基于PyTorch的开源目标检测工具箱,支持多种检测模型。CSWin Transformer可以集成到MMDetection中,用于各种视觉任务。
TIMM
TIMM(PyTorch Image Models)是一个包含多种图像模型的库,CSWin Transformer可以作为其中的一种模型,方便用户进行图像分类任务。
通过以上教程,你可以快速上手CSWin Transformer,并在各种视觉任务中应用它。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09