首页
/ CSWin Transformer 使用教程

CSWin Transformer 使用教程

2024-09-14 05:21:47作者:董宙帆

项目介绍

CSWin Transformer(Cross-Shaped Window Transformer)是由微软研究院开发的一种高效的视觉Transformer模型。它通过引入交叉形状的窗口自注意力机制,显著降低了计算复杂度,同时保持了强大的建模能力。CSWin Transformer适用于多种视觉任务,包括图像分类、目标检测和语义分割。

项目快速启动

环境准备

首先,确保你已经安装了Python和PyTorch。然后,克隆CSWin Transformer的GitHub仓库并安装所需的依赖包。

git clone https://github.com/microsoft/CSWin-Transformer.git
cd CSWin-Transformer
bash install_req.sh

训练模型

以下是一个简单的训练脚本示例,用于训练CSWin Transformer模型进行图像分类任务。

bash train.sh 8 --data <data_path> --model CSWin_64_12211_tiny_224 -b 256 --lr 2e-3 --weight-decay 0.05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.2

微调模型

如果你已经有了预训练模型,可以使用以下脚本进行微调。

bash finetune.sh 8 --data <data_path> --model CSWin_96_24322_base_384 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 384 --warmup-epochs 0 --model-ema-decay 0.9998 --finetune <pretrained_model_path> --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1

应用案例和最佳实践

图像分类

CSWin Transformer在ImageNet-1K数据集上表现出色,可以在较少的计算资源下达到高精度。以下是一个使用CSWin Transformer进行图像分类的示例代码。

import torch
from cswin_transformer import CSWinTransformer

# 加载预训练模型
model = CSWinTransformer(pretrained=True)

# 加载图像
image = torch.randn(1, 3, 224, 224)

# 前向传播
output = model(image)

# 输出分类结果
print(output)

目标检测

CSWin Transformer也可以用于目标检测任务。以下是一个使用CSWin Transformer作为骨干网络的Mask R-CNN示例。

from detectron2.modeling import build_model
from detectron2.config import get_cfg
from detectron2 import model_zoo

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.BACKBONE.NAME = "build_cswin_fpn_backbone"

model = build_model(cfg)

典型生态项目

Detectron2

Detectron2是Facebook AI Research推出的一个目标检测和分割框架,支持多种模型和算法。CSWin Transformer可以作为其骨干网络,提升检测和分割性能。

MMDetection

MMDetection是一个基于PyTorch的开源目标检测工具箱,支持多种检测模型。CSWin Transformer可以集成到MMDetection中,用于各种视觉任务。

TIMM

TIMM(PyTorch Image Models)是一个包含多种图像模型的库,CSWin Transformer可以作为其中的一种模型,方便用户进行图像分类任务。

通过以上教程,你可以快速上手CSWin Transformer,并在各种视觉任务中应用它。

登录后查看全文

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
997
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
498
396
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
114
199
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
61
143
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
342
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
97
251
ArkAnalyzer-HapRayArkAnalyzer-HapRay
ArkAnalyzer-HapRay 是一款专门为OpenHarmony应用性能分析设计的工具。它能够提供应用程序性能的深度洞察,帮助开发者优化应用,以提升用户体验。
Python
18
6
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
34
38
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
580
41