Redis-py项目新增聚合查询评分器支持:实现BM25与向量混合搜索
2025-05-17 18:34:56作者:宣利权Counsellor
Redis-py作为Redis官方Python客户端库,近期在其搜索模块中新增了对聚合查询评分器的支持。这一重要更新使得开发者能够更加灵活地构建混合搜索查询,特别是结合了传统文本检索(BM25)和向量相似度搜索的混合评分场景。
技术背景
在全文搜索引擎中,BM25是一种经典的文本相关性评分算法,而向量搜索则基于神经网络嵌入来计算相似度。现代搜索系统往往需要同时利用这两种技术的优势:BM25擅长处理精确关键词匹配,而向量搜索能够捕捉语义相似性。
Redis Search模块之前已经支持这两种搜索方式,但在聚合查询中缺乏对评分器的控制能力,导致无法实现两者的有效结合。最新版本的Redis-py通过扩展AggregateRequest类解决了这一限制。
实现细节
新版本在AggregateRequest类中增加了scorer()方法,允许开发者指定评分算法。配合add_scores()方法,可以在聚合结果中包含原始评分,然后通过apply()操作实现自定义的混合评分公式。
核心改进点包括:
- 新增scorer()方法设置评分算法
- 支持在聚合查询中返回原始评分
- 允许通过表达式组合不同评分
使用示例
以下是一个典型的混合搜索实现示例,结合了BM25文本评分和向量相似度:
# 创建包含文本和向量字段的索引
client.ft().create_index(
(
TextField("name", sortable=True, weight=5.0),
TextField("description", sortable=True, weight=5.0),
VectorField("vector", "HNSW",
{"TYPE": "FLOAT32", "DIM": 2, "DISTANCE_METRIC": "COSINE"}),
)
)
# 构建混合搜索查询
query_string = "(@description:cat)=>[KNN 3 @vector $vec_param AS dist]"
req = (
aggregations.AggregateRequest(query_string)
.scorer("BM25") # 设置BM25评分器
.add_scores() # 包含原始评分
.apply(hybrid_score="@__score + @dist") # 自定义混合评分
.load("*")
.dialect(4)
)
# 执行查询
res = client.ft().aggregate(
req,
query_params={"vec_param": vector_embedding}
).rows[0]
这个示例展示了如何:
- 使用BM25算法计算文本相关性
- 通过KNN近邻搜索计算向量相似度
- 将两种评分相加得到最终混合评分
应用价值
这一改进为开发者带来了以下优势:
- 更精准的相关性排序:可以同时考虑关键词匹配和语义相似性
- 灵活的评分策略:支持自定义评分公式,适应不同业务场景
- 简化开发流程:无需客户端二次处理即可获得混合评分结果
- 性能优化:所有计算在Redis服务端完成,减少网络传输
适用场景
该功能特别适用于:
- 电商平台的商品搜索(结合精确匹配和语义扩展)
- 内容推荐系统(平衡关键词和内容特征)
- 知识库问答(同时考虑问题匹配和答案相关性)
- 任何需要兼顾精确性和语义理解的搜索场景
总结
Redis-py对聚合查询评分器的支持完善了其混合搜索能力,使开发者能够构建更智能、更精准的搜索系统。这一改进体现了Redis搜索功能向现代搜索需求的演进,为复杂搜索场景提供了简单而强大的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
681
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1