ggstatsplot中如何自定义统计显著性标注样式
在数据可视化领域,ggstatsplot是一个强大的R语言扩展包,它基于ggplot2构建,能够直接在统计图形上添加丰富的统计信息。本文将重点介绍如何在该包中自定义统计显著性标注的显示方式。
背景介绍
在统计图形中,我们经常需要展示组间比较的显著性水平。传统上,科研人员习惯使用星号(*)系统来表示不同的显著性水平:
-
- 表示 p < 0.05
- ** 表示 p < 0.01
- *** 表示 p < 0.001
然而,ggstatsplot从0.1.1版本开始,默认将pairwise.annotation参数设置为"p.value"而非"asterisk"。这一变更的原因是不同学科领域对星号标注的惯例并不统一,可能导致误解。
自定义标注方法
虽然默认设置已经改变,但用户仍可以通过以下方式恢复星号标注系统:
-
使用pairwise.comparisons函数参数: 在调用ggstatsplot相关函数时,可以通过设置
pairwise.annotation = "asterisk"参数来启用星号标注系统。 -
显著性水平阈值设置: 可以进一步通过
p.adjust.method参数调整多重比较校正方法,以及通过signif.level参数设置显著性阈值。 -
仅显示显著结果: 如果希望只显示达到显著性水平的结果(不显示"ns"标记),可以通过调整显著性阈值或使用数据预处理方法过滤不显著的结果。
实际应用建议
-
考虑学科惯例: 在使用星号标注前,应考虑所在学科领域的惯例。某些领域可能更倾向于报告精确p值。
-
图形可读性: 星号系统在图形空间有限时特别有用,可以节省空间并提高可读性。
-
多重比较校正: 当进行多组比较时,务必考虑使用适当的p值校正方法,如Bonferroni或FDR校正。
-
一致性原则: 在同一研究或论文中保持标注方式的一致性,避免混用不同标注系统。
通过合理配置ggstatsplot的参数,研究人员可以根据具体需求和学科惯例,灵活地展示统计显著性结果,从而制作出既美观又信息丰富的统计图形。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00