HTNN 项目启动与配置教程
2025-04-27 14:41:24作者:郁楠烈Hubert
1. 项目目录结构及介绍
HTNN 项目目录结构如下所示:
htnn/
├── README.md
├── requirements.txt
├── setup.py
├── htnn/
│ ├── __init__.py
│ ├── config.py
│ ├── main.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── model.py
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── common.py
│ └── trainers/
│ ├── __init__.py
│ └── trainer.py
以下是各个目录和文件的简要说明:
README.md:项目说明文件,包含项目介绍、安装步骤和使用方法。requirements.txt:项目依赖文件,列出了项目运行所需的第三方库。setup.py:项目安装和打包的配置文件。htnn/:项目主目录,包含了项目的所有源代码。__init__.py:Python 包初始化文件。config.py:项目配置文件,定义了项目的配置参数。main.py:项目入口文件,负责启动和运行项目。models/:模型模块目录,包含项目所使用的模型定义。__init__.py:Python 包初始化文件。model.py:具体的模型实现。
utils/:工具模块目录,包含项目中常用的工具函数。__init__.py:Python 包初始化文件。common.py:通用工具函数。
trainers/:训练模块目录,包含模型的训练和评估逻辑。__init__.py:Python 包初始化文件。trainer.py:模型训练器。
2. 项目的启动文件介绍
项目的启动文件为 main.py,其主要功能如下:
- 解析命令行参数。
- 加载配置文件。
- 初始化模型。
- 启动训练或评估流程。
以下是 main.py 的部分代码示例:
import argparse
from config import Config
from models.model import MyModel
from trainers.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="HTNN 启动脚本")
parser.add_argument('--config', type=str, default='config.py', help='配置文件路径')
args = parser.parse_args()
config = Config(args.config)
model = MyModel(config)
trainer = Trainer(model, config)
trainer.train()
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件为 config.py,用于存储项目运行时所需的配置参数。配置文件通常包含以下内容:
- 数据集路径和参数。
- 模型参数,如层数、隐藏单元数等。
- 训练参数,如学习率、批大小、迭代次数等。
- 评估参数,如评估频率、评价指标等。
以下是 config.py 的部分代码示例:
class Config:
def __init__(self, file_path):
self.file_path = file_path
# 读取配置文件
# ...
def get_dataset_path(self):
return self.file_path['dataset_path']
def get_model_params(self):
return self.file_path['model_params']
def get_train_params(self):
return self.file_path['train_params']
def get_eval_params(self):
return self.file_path['eval_params']
通过以上教程,您应该能够了解 HTNN 项目的目录结构、启动文件和配置文件的基本内容,从而开始使用和开发该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355