Volatility 3 开源项目教程
1. 项目介绍
Volatility 3 是一个用于从内存(RAM)样本中提取数字证据的开源框架。它是世界上最广泛使用的内存取证工具之一。Volatility 3 完全独立于被调查的系统运行,能够提供对系统运行时状态的可见性。该框架旨在向人们介绍从内存样本中提取数字证据的技术和复杂性,并提供一个平台,以便进一步研究这一令人兴奋的领域。
Volatility 3 是 Volatility 框架的完全重写版本,于2019年由 Volatility Foundation 发布。这个重写版本旨在解决原始代码库在过去10年中显现出的技术和性能挑战。此外,Volatility 3 采用了一种与 Volatility 社区目标更加一致的自定义许可证——Volatility Software License (VSL)。
2. 项目快速启动
2.1 安装依赖
Volatility 3 需要 Python 3.8.0 或更高版本。可以使用以下命令安装最小的依赖集(某些插件可能无法工作):
pip3 install -r requirements-minimal.txt
或者,可以使用以下命令安装所有依赖:
pip3 install -r requirements.txt
2.2 下载 Volatility 3
可以通过以下命令从 GitHub 克隆最新版本的 Volatility 3:
git clone https://github.com/volatilityfoundation/volatility3.git
2.3 快速启动
克隆项目后,可以使用以下命令查看可用选项:
python3 vol.py -h
要获取有关 Windows 内存样本的更多信息,并确保 Volatility 支持该样本类型,可以运行以下命令:
python3 vol.py -f <imagepath> windows.info
例如:
python3 vol.py -f /home/user/samples/stuxnet.vmem windows.info
3. 应用案例和最佳实践
3.1 内存取证
Volatility 3 广泛应用于内存取证领域,能够从内存样本中提取进程、网络连接、文件系统等关键信息。例如,可以使用以下命令提取进程列表:
python3 vol.py -f <imagepath> windows.pslist
3.2 恶意软件分析
在恶意软件分析中,Volatility 3 可以帮助分析人员从内存中提取恶意软件的运行时状态,包括进程、模块、网络连接等。例如,可以使用以下命令提取网络连接信息:
python3 vol.py -f <imagepath> windows.netscan
3.3 事件响应
在事件响应过程中,Volatility 3 可以帮助快速提取和分析内存中的关键信息,以便快速定位和响应安全事件。例如,可以使用以下命令提取文件系统信息:
python3 vol.py -f <imagepath> windows.filescan
4. 典型生态项目
4.1 Volatility 2
Volatility 2 是 Volatility 框架的早期版本,虽然功能强大,但在性能和可扩展性方面存在一些限制。Volatility 3 作为其继任者,解决了这些问题,并提供了更强大的功能和更好的性能。
4.2 dwarf2json
dwarf2json 是一个用于生成 Linux 和 macOS 符号表的工具。Volatility 3 需要这些符号表来解析内存样本中的数据结构。dwarf2json 可以帮助生成这些符号表,以便在 Volatility 3 中使用。
4.3 Volatility Foundation
Volatility Foundation 是一个非营利组织,致力于推动内存取证技术的发展。它不仅维护 Volatility 3 项目,还提供相关的培训、文档和支持,帮助社区更好地使用和贡献于该项目。
通过以上模块的介绍,您应该能够快速上手并深入了解 Volatility 3 开源项目。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









