K-Scheduler 开源项目使用指南
2024-09-14 07:51:10作者:凤尚柏Louis
1. 项目介绍
K-Scheduler 是一个通用的种子调度器,专为模糊测试器(如 LibFuzzer 和 AFL 的 havoc 模式)和符号执行引擎(如 QSYM)设计。它通过图中心性分析来优化种子调度,从而提高模糊测试的效率和覆盖率。K-Scheduler 的核心思想是利用控制流图(CFG)的结构信息来预测种子变异后可能覆盖的边缘,从而更有效地选择种子进行变异。
2. 项目快速启动
2.1 环境准备
在开始使用 K-Scheduler 之前,请确保您的系统满足以下要求:
- Python 3.7
- LLVM 11.0.1
- wllvm
- NetworKit
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/Dongdongshe/K-Scheduler.git cd K-Scheduler -
安装依赖:
pip install -r requirements.txt -
编译示例程序:
cd libfuzzer_integration/build_example make
2.3 运行示例
以下是一个简单的示例,展示如何使用 K-Scheduler 运行 LibFuzzer:
-
启动 LibFuzzer:
./harfbuzz-1.3.2-fsanitize_fuzzer_kscheduler -kscheduler=1 -min_num_mutations_for_each_seed=200 /tmp_seeds/ seeds/ -
启动图分析模块:
python3 gen_dyn_weight.py
3. 应用案例和最佳实践
3.1 应用案例
K-Scheduler 已经在多个实际项目中得到了应用,特别是在需要高覆盖率的模糊测试场景中。例如,在 Google FuzzBench 的 12 个程序中,K-Scheduler 显著提高了特征覆盖率和边缘覆盖率,并发现了 3 个之前未知的漏洞。
3.2 最佳实践
- 优化种子选择:通过图中心性分析,K-Scheduler 能够更智能地选择种子进行变异,从而提高模糊测试的效率。
- 动态权重调整:K-Scheduler 支持动态调整种子的权重,以适应不同的测试场景和需求。
- 多引擎支持:K-Scheduler 不仅支持 LibFuzzer,还支持 AFL 和 QSYM,适用于多种模糊测试和符号执行引擎。
4. 典型生态项目
K-Scheduler 作为一个通用的种子调度器,可以与多个开源项目集成,形成强大的模糊测试生态系统。以下是一些典型的生态项目:
- LibFuzzer:一个高效的模糊测试引擎,与 K-Scheduler 结合可以显著提高测试覆盖率。
- AFL:一个广泛使用的模糊测试工具,K-Scheduler 的 havoc 模式可以进一步优化其种子调度。
- QSYM:一个高效的符号执行引擎,K-Scheduler 可以与其结合,提高符号执行的效率和覆盖率。
通过这些生态项目的集成,K-Scheduler 能够为开发者提供一个全面的模糊测试解决方案,帮助发现更多的软件漏洞。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882