在KubeRay中为VLLM服务添加Prometheus监控指标
2025-07-09 02:55:50作者:沈韬淼Beryl
在Kuberay项目中部署VLLM服务时,监控指标的收集是一个重要但容易被忽视的环节。本文将详细介绍如何为基于KubeRay的VLLM服务添加Prometheus监控支持。
监控指标的重要性
在生产环境中,实时监控服务的运行状态至关重要。对于VLLM这样的大语言模型推理服务,我们需要监控包括请求延迟、吞吐量、GPU利用率等关键指标,以便及时发现性能瓶颈和潜在问题。
实现方案分析
原问题中提到的解决方案是通过FastAPI路由暴露/metrics端点来提供Prometheus格式的监控数据。这种方法的核心在于:
- 使用prometheus_client库提供的ASGI中间件
- 支持多进程环境下的指标收集
- 自动处理Prometheus的多进程目录配置
技术实现细节
多进程支持
VLLM服务通常会运行多个工作进程以提高吞吐量。Prometheus客户端库提供了multiprocess模块来支持多进程环境下的指标聚合。关键点在于:
- 设置PROMETHEUS_MULTIPROC_DIR环境变量指定共享目录
- 使用MultiProcessCollector聚合各进程的指标
代码实现优化
原始代码可以进一步优化,使其更加健壮和可维护:
from fastapi import APIRouter
from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess
import os
import logging
logger = logging.getLogger(__name__)
class MetricsEndpoint:
def __init__(self):
self.router = APIRouter()
self.router.add_api_route("/metrics", self.metrics, methods=["GET"])
async def metrics(self):
"""暴露Prometheus格式的监控指标"""
registry = CollectorRegistry()
# 检查是否配置了多进程目录
multiproc_dir = os.getenv("PROMETHEUS_MULTIPROC_DIR")
if multiproc_dir:
logger.info("使用多进程模式收集指标,目录: %s", multiproc_dir)
multiprocess.MultiProcessCollector(registry)
else:
logger.warning("未配置PROMETHEUS_MULTIPROC_DIR,使用单进程模式")
return make_asgi_app(registry=registry)
部署注意事项
在KubeRay中部署时,需要确保:
- 在RayService配置中正确设置PROMETHEUS_MULTIPROC_DIR环境变量
- 该目录需要是可写的共享存储
- 配置ServiceMonitor或PodMonitor让Prometheus自动发现并抓取指标
监控指标类型建议
除了基础的系统指标外,建议为VLLM服务添加以下自定义指标:
- 请求延迟分布
- 并发请求数
- 令牌生成速率
- GPU内存使用情况
- 批处理大小分布
总结
为KubeRay上的VLLM服务添加监控是确保服务可靠性的关键步骤。通过合理配置Prometheus客户端和多进程支持,我们可以获得全面的服务运行指标,为性能优化和故障排查提供有力支持。实现时需要注意多进程环境下的指标聚合问题,并确保监控系统能够自动发现和收集这些指标。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249