在KubeRay中为VLLM服务添加Prometheus监控指标
2025-07-09 15:11:51作者:沈韬淼Beryl
在Kuberay项目中部署VLLM服务时,监控指标的收集是一个重要但容易被忽视的环节。本文将详细介绍如何为基于KubeRay的VLLM服务添加Prometheus监控支持。
监控指标的重要性
在生产环境中,实时监控服务的运行状态至关重要。对于VLLM这样的大语言模型推理服务,我们需要监控包括请求延迟、吞吐量、GPU利用率等关键指标,以便及时发现性能瓶颈和潜在问题。
实现方案分析
原问题中提到的解决方案是通过FastAPI路由暴露/metrics端点来提供Prometheus格式的监控数据。这种方法的核心在于:
- 使用prometheus_client库提供的ASGI中间件
- 支持多进程环境下的指标收集
- 自动处理Prometheus的多进程目录配置
技术实现细节
多进程支持
VLLM服务通常会运行多个工作进程以提高吞吐量。Prometheus客户端库提供了multiprocess模块来支持多进程环境下的指标聚合。关键点在于:
- 设置PROMETHEUS_MULTIPROC_DIR环境变量指定共享目录
- 使用MultiProcessCollector聚合各进程的指标
代码实现优化
原始代码可以进一步优化,使其更加健壮和可维护:
from fastapi import APIRouter
from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess
import os
import logging
logger = logging.getLogger(__name__)
class MetricsEndpoint:
def __init__(self):
self.router = APIRouter()
self.router.add_api_route("/metrics", self.metrics, methods=["GET"])
async def metrics(self):
"""暴露Prometheus格式的监控指标"""
registry = CollectorRegistry()
# 检查是否配置了多进程目录
multiproc_dir = os.getenv("PROMETHEUS_MULTIPROC_DIR")
if multiproc_dir:
logger.info("使用多进程模式收集指标,目录: %s", multiproc_dir)
multiprocess.MultiProcessCollector(registry)
else:
logger.warning("未配置PROMETHEUS_MULTIPROC_DIR,使用单进程模式")
return make_asgi_app(registry=registry)
部署注意事项
在KubeRay中部署时,需要确保:
- 在RayService配置中正确设置PROMETHEUS_MULTIPROC_DIR环境变量
- 该目录需要是可写的共享存储
- 配置ServiceMonitor或PodMonitor让Prometheus自动发现并抓取指标
监控指标类型建议
除了基础的系统指标外,建议为VLLM服务添加以下自定义指标:
- 请求延迟分布
- 并发请求数
- 令牌生成速率
- GPU内存使用情况
- 批处理大小分布
总结
为KubeRay上的VLLM服务添加监控是确保服务可靠性的关键步骤。通过合理配置Prometheus客户端和多进程支持,我们可以获得全面的服务运行指标,为性能优化和故障排查提供有力支持。实现时需要注意多进程环境下的指标聚合问题,并确保监控系统能够自动发现和收集这些指标。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
208
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873