JNDI 注入攻击利用工具指南
项目介绍
JNDI(Java Naming and Directory Interface)注入攻击利用工具是一个专为安全研究者设计的高级框架,旨在生成有效的JNDI链接,并通过启动RMI(远程方法调用)、LDAP(轻量级目录访问协议)服务器以及HTTP服务器提供必要的背景服务。它适用于多种环境下的JNDI注入漏洞测试,包括但不限于Jackson和Fastjson等流行库中的漏洞。此工具集成了超过80种攻击向量,远超同类工具如ysoserial,使得研究人员能够更高效地验证目标系统是否存在相关脆弱性。
项目快速启动
安装与准备
首先,确保你的开发环境中已经配置了Java,并设置好了JAVA_HOME环境变量。接下来,克隆项目仓库到本地:
git clone https://github.com/sayers522/JNDI-Injection-Exploit.git
cd JNDI-Injection-Exploit
为了避免构建过程中的测试步骤,你可以跳过测试打包项目:
mvn clean package -DskipTests
这将会生成一个包含所有依赖的可执行jar文件。
启动示例
使用以下命令启动工具,你可以自定义命令和服务器地址。默认情况下,它会在远端类文件中执行打开Mac计算器的命令,并且使用第一个网络接口的地址作为服务器地址。
java -jar target/JNDI-Injection-Exploit-1.0-SNAPSHOT-all.jar -C "你要执行的命令" -A "你的服务器地址"
请注意,确保所需的端口(比如1099、1389、8180)未被其他进程占用,或相应调整配置。
应用案例和最佳实践
模拟漏洞检测
假设你在测试一个应用的反序列化过程中是否易受JNDI注入影响,可以构造含有特定JNDI链接的数据包,然后利用本工具提供的服务地址替换其中的远程对象URL。这样做可以触发潜在的漏洞,进而让服务器尝试连接到由你控制的RMI或LDAP服务器,从而证明存在安全风险。
安全教育和培训
在安全意识提升和团队培训中,本工具可用于模拟攻击场景,帮助开发者理解JNDI注入的原理及防护措施,增强实战技能。
典型生态项目
在安全评估和防御领域,JNDI-Injection-Exploit与其他工具协同工作,共同构成安全研究人员的工具箱。例如,结合使用OWASP ZAP进行自动化漏洞扫描,或是与Burp Suite一起定制复杂的请求,可以对应用程序进行全面的安全审计。此外,了解和对比ysoserial等其他序列化利用工具,可以帮助深入理解不同技术栈下的攻击手法和防御策略。
以上就是关于JNDI注入利用工具的简要指南,通过此工具的使用,安全专业人士能够有效地识别和分析JNDI相关的安全风险,同时也是学习和防御此类攻击的重要实践资源。务必只在合法授权的情况下进行此类测试,以符合法律和道德规范。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00