JNDI-Injection-Memshell 使用教程
2024-08-16 15:07:30作者:吴年前Myrtle
项目介绍
JNDI-Injection-Memshell 是一个针对 Java Naming and Directory Interface (JNDI) 注入漏洞的开源渗透测试工具。该项目旨在帮助安全研究人员和白帽黑客模拟 JNDI 注入攻击,以检测系统中可能存在的安全风险,并为防御者提供理解此类威胁的实战案例。
项目快速启动
环境准备
- Java 8 或更高版本
- Git
下载项目
git clone https://github.com/MUYU212/JNDI-Injection-Memshell.git
cd JNDI-Injection-Memshell
编译项目
mvn clean package
运行项目
java -jar target/JNDI-Injection-Memshell-1.0-SNAPSHOT-all.jar
应用案例和最佳实践
应用案例
- 渗透测试:网络安全专业人士可以使用此工具来检测其保护下的系统是否存在 JNDI 注入漏洞。
- 安全研究:学术界和行业研究者可以深入了解 JNDI 注入的工作原理及其潜在危险。
- 教育与培训:它为学习网络攻防知识的学生或新人提供了实践平台,帮助他们理解这类攻击及如何防止。
最佳实践
- 权限控制:在使用 Memshell 进行测试时,请确保已获得必要的权限,并遵守相关法律法规。
- 安全意识:提高对 JNDI 注入漏洞的认识,定期进行安全培训和演练。
- 代码审计:定期对代码进行审计,及时发现并修复潜在的安全漏洞。
典型生态项目
- Fastjson:一个高性能的 JSON 库,常用于 Java 项目的序列化和反序列化。
- Jackson:另一个流行的 JSON 处理库,广泛应用于各种 Java 应用中。
- Rogue JNDI:一个用于 JNDI 注入利用的工具,提供了丰富的功能和灵活的配置选项。
通过以上教程,您可以快速了解并使用 JNDI-Injection-Memshell 项目,进行安全测试和研究。希望本教程对您有所帮助。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210