PaddleOCR版面分析模型转ONNX格式的注意事项
2025-05-01 07:26:49作者:董灵辛Dennis
在PaddleOCR项目中使用版面分析功能时,将训练好的PaddlePaddle模型转换为ONNX格式是一个常见需求。本文将详细介绍这一转换过程中的关键步骤和注意事项,帮助开发者避免常见错误。
模型训练阶段
首先需要训练版面分析模型,使用以下命令:
python3 tools/train.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml --eval
这个命令会基于指定的配置文件训练一个版面分析模型,并在训练过程中进行评估。
模型导出阶段
训练完成后,需要将模型导出为推理格式。这里有一个关键点需要注意:
python3 tools/export_model.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml -o export.benchmark=True weights=output/picodet_lcnet_x1_0_layout/best_model --output_dir=output_inference/
特别注意:必须添加export.benchmark=True参数,否则后续转换为ONNX格式时会出现输入维度不匹配的问题。这是因为默认导出的模型会保留一些训练时的特性,而benchmark模式会优化模型结构使其更适合推理场景。
转换为ONNX格式
使用Paddle2ONNX工具将导出的模型转换为ONNX格式:
paddle2onnx --model_dir output_inference/picodet_lcnet_x1_0_layout --model_filename model.pdmodel --params_filename model.pdiparams --save_file ./onnx_inference_model/hehe_layout_model_dir/model.onnx --opset_version 11 --enable_onnx_checker True
参数说明:
--opset_version 11:指定ONNX算子集版本--enable_onnx_checker True:启用ONNX模型检查器
在PPStructure中使用ONNX模型
最后,在PPStructure中加载ONNX格式的版面分析模型:
table_engine = PPStructure(
show_log=False,
ocr=True,
layout=True,
table=True,
use_onnx=True,
det_model_dir="./onnx_inference_model/det_onnx/model.onnx",
rec_model_dir="./onnx_inference_model/rec_onnx/model.onnx",
cls_model_dir="./onnx_inference_model/rec_onnx/model.onnx",
table_model_dir="./onnx_inference_model/table_model_dir/model.onnx",
layout_model_dir="./onnx_inference_model/hehe_layout_model_dir/model.onnx"
)
常见问题解决
如果在使用过程中遇到类似"ValueError: Required inputs (['scale_factor']) are missing from input feed (['image'])"的错误,通常是因为模型导出时没有设置export.benchmark=True参数。这个错误表明ONNX模型期望的输入与实际的输入不匹配。
总结
将PaddleOCR的版面分析模型转换为ONNX格式需要注意以下几点:
- 训练完成后导出模型时,必须添加
export.benchmark=True参数 - 使用适当版本的Paddle2ONNX工具进行转换
- 确保ONNX模型的输入输出与PPStructure的预期一致
通过遵循这些步骤,可以成功地将PaddleOCR版面分析模型转换为ONNX格式,并在实际应用中使用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492