PaddleOCR版面分析模型转ONNX格式的注意事项
2025-05-01 11:14:47作者:董灵辛Dennis
在PaddleOCR项目中使用版面分析功能时,将训练好的PaddlePaddle模型转换为ONNX格式是一个常见需求。本文将详细介绍这一转换过程中的关键步骤和注意事项,帮助开发者避免常见错误。
模型训练阶段
首先需要训练版面分析模型,使用以下命令:
python3 tools/train.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml --eval
这个命令会基于指定的配置文件训练一个版面分析模型,并在训练过程中进行评估。
模型导出阶段
训练完成后,需要将模型导出为推理格式。这里有一个关键点需要注意:
python3 tools/export_model.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml -o export.benchmark=True weights=output/picodet_lcnet_x1_0_layout/best_model --output_dir=output_inference/
特别注意:必须添加export.benchmark=True参数,否则后续转换为ONNX格式时会出现输入维度不匹配的问题。这是因为默认导出的模型会保留一些训练时的特性,而benchmark模式会优化模型结构使其更适合推理场景。
转换为ONNX格式
使用Paddle2ONNX工具将导出的模型转换为ONNX格式:
paddle2onnx --model_dir output_inference/picodet_lcnet_x1_0_layout --model_filename model.pdmodel --params_filename model.pdiparams --save_file ./onnx_inference_model/hehe_layout_model_dir/model.onnx --opset_version 11 --enable_onnx_checker True
参数说明:
--opset_version 11:指定ONNX算子集版本--enable_onnx_checker True:启用ONNX模型检查器
在PPStructure中使用ONNX模型
最后,在PPStructure中加载ONNX格式的版面分析模型:
table_engine = PPStructure(
show_log=False,
ocr=True,
layout=True,
table=True,
use_onnx=True,
det_model_dir="./onnx_inference_model/det_onnx/model.onnx",
rec_model_dir="./onnx_inference_model/rec_onnx/model.onnx",
cls_model_dir="./onnx_inference_model/rec_onnx/model.onnx",
table_model_dir="./onnx_inference_model/table_model_dir/model.onnx",
layout_model_dir="./onnx_inference_model/hehe_layout_model_dir/model.onnx"
)
常见问题解决
如果在使用过程中遇到类似"ValueError: Required inputs (['scale_factor']) are missing from input feed (['image'])"的错误,通常是因为模型导出时没有设置export.benchmark=True参数。这个错误表明ONNX模型期望的输入与实际的输入不匹配。
总结
将PaddleOCR的版面分析模型转换为ONNX格式需要注意以下几点:
- 训练完成后导出模型时,必须添加
export.benchmark=True参数 - 使用适当版本的Paddle2ONNX工具进行转换
- 确保ONNX模型的输入输出与PPStructure的预期一致
通过遵循这些步骤,可以成功地将PaddleOCR版面分析模型转换为ONNX格式,并在实际应用中使用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205