Darts库中模型训练与微调的技术要点解析
2025-05-27 06:04:10作者:申梦珏Efrain
神经网络模型的训练与保存策略
在使用Darts库中的TCN等神经网络模型时,模型训练过程中会自动记录验证集的表现。为了保存验证集表现最佳的模型权重,Darts提供了自动检查点功能。这一机制会在训练过程中持续监控验证指标,当发现更优的模型时自动保存其权重参数。用户可以通过设置模型参数来启用这一功能,确保最终获得的是在验证集上表现最好的模型版本。
神经网络模型的微调方法
当有新数据集到来时,对预训练TCN模型进行微调需要遵循特定流程。首先需要创建一个新的模型实例,这个新实例可以保持与原模型相同的架构参数,但训练相关的参数(如学习率、批次大小等)可以根据新数据特点进行调整。然后需要加载预训练模型的权重参数作为初始化,最后在新数据集上调用fit()方法进行微调训练。这种方法利用了迁移学习的思想,能够使模型在新数据上更快收敛并获得更好的性能。
LightGBM模型的训练特性
Darts库中的LightGBM模型实现有其独特特性。每次调用fit()方法时,都会创建一个全新的LightGBM模型实例,并在提供的协变量数据上进行训练。这意味着当有新数据集时,LightGBM不会保留或利用之前训练的任何信息,而是完全从零开始在新数据上训练。这种特性与神经网络模型的微调能力形成鲜明对比,也决定了在实际应用中需要采用不同的数据策略。
模型选择的实践建议
在实际应用中,选择使用TCN等神经网络还是LightGBM等树模型需要考虑多个因素。神经网络适合处理序列数据,支持微调,但训练时间较长;LightGBM训练速度快但不支持增量学习。当数据持续更新时,TCN可以通过微调利用历史知识,而LightGBM则需要考虑是否要合并新旧数据重新训练,或者采用其他策略如模型集成等。理解这些底层机制有助于在实际项目中做出更合理的技术选型和实现方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881