Darts库中Torch模型微调时的自动检查点使用指南
2025-05-27 16:33:20作者:滑思眉Philip
概述
在使用Darts库中的TCNModel进行时间序列预测时,自动检查点功能能够有效保存训练过程中的模型状态,防止意外中断导致的数据丢失。然而,当我们需要对已训练模型进行微调(finetune)时,这一功能的正确使用方式可能会让用户感到困惑。
自动检查点基础用法
在初始训练阶段,我们可以通过设置save_checkpoints=True并指定model_name和work_dir来启用自动检查点功能。系统会在每个epoch结束时自动保存模型状态。当训练意外中断时,可以通过TCNModel.load_from_checkpoint()方法恢复训练,只需指定相同的model_name和work_dir参数即可。
微调时的挑战
当需要对已训练模型进行微调时,直接使用load_weights_from_checkpoint()会遇到一个技术难题:该方法不是静态方法,需要先实例化模型对象。但如果尝试使用相同的model_name和work_dir创建新实例,系统会报错提示模型数据已存在,要求要么加载现有模型继续训练,要么使用force_reset=True从头开始训练。
解决方案
方案一:使用不同的模型名称
- 为微调过程指定一个新的
model_name_new - 创建新的模型实例时使用这个新名称
- 从原始模型的检查点加载权重
这种方法保留了原始模型的检查点不变,同时为微调过程创建了新的检查点存储位置。
model_new = TCNModel(..., model_name=model_name_new)
model_new.load_weights_from_checkpoint(model_name=model_name, ...)
方案二:手动保存并加载权重
- 将原始模型手动保存到指定路径
- 创建新模型实例时使用
force_reset=True和原始model_name - 从手动保存的文件加载权重
这种方法会覆盖原始模型的检查点,但保留了模型权重。
# 保存原始模型状态
model_old.save(model_path)
# 创建新模型实例,重置检查点
model_new = TCNModel(..., model_name=model_name, force_reset=True)
# 加载手动保存的权重
model_new.load_weights(model_path, ...)
最佳实践建议
- 对于长期项目,建议采用方案一,保留完整的训练历史记录
- 对于存储空间有限的情况,方案二更为节省空间
- 无论采用哪种方案,都建议定期备份重要模型状态
- 在微调前,确保原始模型已保存到稳定状态
通过合理运用这些技术,开发者可以在Darts库中高效地实现Torch模型的自动检查点功能,确保训练过程的可靠性和连续性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1