Textual Inversion 项目使用指南
2024-09-14 17:04:32作者:尤辰城Agatha
1. 项目介绍
Textual Inversion 是一个用于个性化文本到图像生成模型的技术。通过仅使用3-5张用户提供的概念图像(如对象或风格),Textual Inversion 可以在冻结的文本到图像模型的嵌入空间中学习并表示这些概念。这些新学习的“词汇”可以被组合成自然语言句子,从而以直观的方式指导个性化创作。
该项目的主要贡献在于,它展示了如何通过简单的技术手段,使文本到图像模型能够生成特定概念的图像,而无需重新训练整个模型。
2. 项目快速启动
环境设置
首先,确保你已经安装了必要的依赖。你可以通过以下命令从源代码安装 Diffusers 库:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
接下来,进入 Textual Inversion 的示例文件夹并安装所需的依赖:
cd examples/textual_inversion
pip install -r requirements.txt
训练模型
假设你已经准备好了训练数据,并将其存储在 /path/to/images
目录下。你可以使用以下命令开始训练:
accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \
--train_data_dir=/path/to/images \
--output_dir=textual_inversion_output \
--placeholder_token="<your-token>" \
--initializer_token="object" \
--learnable_property="object" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=5e-04 \
--scale_lr \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--push_to_hub
生成图像
训练完成后,你可以使用以下代码生成图像:
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("textual_inversion_output")
image = pipeline("A <your-token> in the style of Van Gogh", num_inference_steps=50).images[0]
image.save("output.png")
3. 应用案例和最佳实践
应用案例
- 个性化艺术创作:通过 Textual Inversion,艺术家可以快速训练模型以生成特定风格的图像,如梵高的绘画风格。
- 产品设计:设计师可以使用该技术生成特定概念的产品设计,如基于用户提供的几张玩具图片生成新的玩具设计。
最佳实践
- 数据准备:确保训练数据的多样性和质量,以获得更好的模型效果。
- 超参数调整:根据具体任务调整学习率、批量大小等超参数,以优化训练过程。
- 模型评估:定期生成验证图像,以监控模型的训练进度和效果。
4. 典型生态项目
- Stable Diffusion:Textual Inversion 是基于 Stable Diffusion 模型的扩展,Stable Diffusion 是一个强大的文本到图像生成模型。
- Hugging Face Diffusers:该项目依赖于 Hugging Face 的 Diffusers 库,该库提供了丰富的扩散模型工具和资源。
- Latent Diffusion Models (LDM):Textual Inversion 的代码基于 LDM,LDM 是一个用于生成高质量图像的潜在扩散模型。
通过这些生态项目,Textual Inversion 能够充分利用现有的技术和资源,为用户提供高效且灵活的个性化图像生成解决方案。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4