Textual Inversion 项目使用指南
2024-09-14 23:32:36作者:尤辰城Agatha
1. 项目介绍
Textual Inversion 是一个用于个性化文本到图像生成模型的技术。通过仅使用3-5张用户提供的概念图像(如对象或风格),Textual Inversion 可以在冻结的文本到图像模型的嵌入空间中学习并表示这些概念。这些新学习的“词汇”可以被组合成自然语言句子,从而以直观的方式指导个性化创作。
该项目的主要贡献在于,它展示了如何通过简单的技术手段,使文本到图像模型能够生成特定概念的图像,而无需重新训练整个模型。
2. 项目快速启动
环境设置
首先,确保你已经安装了必要的依赖。你可以通过以下命令从源代码安装 Diffusers 库:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
接下来,进入 Textual Inversion 的示例文件夹并安装所需的依赖:
cd examples/textual_inversion
pip install -r requirements.txt
训练模型
假设你已经准备好了训练数据,并将其存储在 /path/to/images 目录下。你可以使用以下命令开始训练:
accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \
--train_data_dir=/path/to/images \
--output_dir=textual_inversion_output \
--placeholder_token="<your-token>" \
--initializer_token="object" \
--learnable_property="object" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=5e-04 \
--scale_lr \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--push_to_hub
生成图像
训练完成后,你可以使用以下代码生成图像:
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("textual_inversion_output")
image = pipeline("A <your-token> in the style of Van Gogh", num_inference_steps=50).images[0]
image.save("output.png")
3. 应用案例和最佳实践
应用案例
- 个性化艺术创作:通过 Textual Inversion,艺术家可以快速训练模型以生成特定风格的图像,如梵高的绘画风格。
- 产品设计:设计师可以使用该技术生成特定概念的产品设计,如基于用户提供的几张玩具图片生成新的玩具设计。
最佳实践
- 数据准备:确保训练数据的多样性和质量,以获得更好的模型效果。
- 超参数调整:根据具体任务调整学习率、批量大小等超参数,以优化训练过程。
- 模型评估:定期生成验证图像,以监控模型的训练进度和效果。
4. 典型生态项目
- Stable Diffusion:Textual Inversion 是基于 Stable Diffusion 模型的扩展,Stable Diffusion 是一个强大的文本到图像生成模型。
- Hugging Face Diffusers:该项目依赖于 Hugging Face 的 Diffusers 库,该库提供了丰富的扩散模型工具和资源。
- Latent Diffusion Models (LDM):Textual Inversion 的代码基于 LDM,LDM 是一个用于生成高质量图像的潜在扩散模型。
通过这些生态项目,Textual Inversion 能够充分利用现有的技术和资源,为用户提供高效且灵活的个性化图像生成解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
288
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
仓颉编译器源码及 cjdb 调试工具。
C++
150
881
React Native鸿蒙化仓库
JavaScript
297
345
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7