Textual Inversion 项目使用指南
2024-09-14 23:32:36作者:尤辰城Agatha
1. 项目介绍
Textual Inversion 是一个用于个性化文本到图像生成模型的技术。通过仅使用3-5张用户提供的概念图像(如对象或风格),Textual Inversion 可以在冻结的文本到图像模型的嵌入空间中学习并表示这些概念。这些新学习的“词汇”可以被组合成自然语言句子,从而以直观的方式指导个性化创作。
该项目的主要贡献在于,它展示了如何通过简单的技术手段,使文本到图像模型能够生成特定概念的图像,而无需重新训练整个模型。
2. 项目快速启动
环境设置
首先,确保你已经安装了必要的依赖。你可以通过以下命令从源代码安装 Diffusers 库:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
接下来,进入 Textual Inversion 的示例文件夹并安装所需的依赖:
cd examples/textual_inversion
pip install -r requirements.txt
训练模型
假设你已经准备好了训练数据,并将其存储在 /path/to/images 目录下。你可以使用以下命令开始训练:
accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \
--train_data_dir=/path/to/images \
--output_dir=textual_inversion_output \
--placeholder_token="<your-token>" \
--initializer_token="object" \
--learnable_property="object" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=5e-04 \
--scale_lr \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--push_to_hub
生成图像
训练完成后,你可以使用以下代码生成图像:
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("textual_inversion_output")
image = pipeline("A <your-token> in the style of Van Gogh", num_inference_steps=50).images[0]
image.save("output.png")
3. 应用案例和最佳实践
应用案例
- 个性化艺术创作:通过 Textual Inversion,艺术家可以快速训练模型以生成特定风格的图像,如梵高的绘画风格。
- 产品设计:设计师可以使用该技术生成特定概念的产品设计,如基于用户提供的几张玩具图片生成新的玩具设计。
最佳实践
- 数据准备:确保训练数据的多样性和质量,以获得更好的模型效果。
- 超参数调整:根据具体任务调整学习率、批量大小等超参数,以优化训练过程。
- 模型评估:定期生成验证图像,以监控模型的训练进度和效果。
4. 典型生态项目
- Stable Diffusion:Textual Inversion 是基于 Stable Diffusion 模型的扩展,Stable Diffusion 是一个强大的文本到图像生成模型。
- Hugging Face Diffusers:该项目依赖于 Hugging Face 的 Diffusers 库,该库提供了丰富的扩散模型工具和资源。
- Latent Diffusion Models (LDM):Textual Inversion 的代码基于 LDM,LDM 是一个用于生成高质量图像的潜在扩散模型。
通过这些生态项目,Textual Inversion 能够充分利用现有的技术和资源,为用户提供高效且灵活的个性化图像生成解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328