T2M-GPT:从文本生成人类动作的革命性开源项目
2024-09-17 09:13:14作者:吴年前Myrtle
项目介绍
T2M-GPT 是一个基于 PyTorch 的开源项目,旨在从文本描述中生成逼真的人类动作。该项目在 CVPR 2023 上发表,论文标题为 "T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations"。T2M-GPT 通过离散表示技术,将文本描述转化为精确的动作序列,为动画制作、虚拟现实、游戏开发等领域提供了强大的工具。
项目技术分析
T2M-GPT 的核心技术包括 VQ-VAE(Vector Quantized Variational Autoencoder)和 GPT(Generative Pre-trained Transformer)。VQ-VAE 用于将连续的动作数据离散化,生成高质量的动作编码;GPT 则负责根据文本描述生成相应的动作序列。这种结合使得 T2M-GPT 能够生成高度逼真且多样化的动作,同时保持与文本描述的高度一致性。
项目及技术应用场景
T2M-GPT 的应用场景非常广泛,包括但不限于:
- 动画制作:自动生成动画角色的动作,减少手动制作的工作量。
- 虚拟现实:为虚拟角色生成自然流畅的动作,提升用户体验。
- 游戏开发:快速生成游戏角色的动作,加速游戏开发进程。
- 人机交互:通过文本指令控制虚拟角色或机器人执行特定动作。
项目特点
- 高精度生成:T2M-GPT 能够根据文本描述生成高度逼真的动作,动作与文本描述的匹配度极高。
- 多样性:生成的动作具有多样性,能够满足不同场景的需求。
- 易于使用:项目提供了详细的安装指南和快速启动教程,用户可以轻松上手。
- 开源社区支持:项目在 GitHub 上开源,用户可以自由下载、使用和贡献代码。
结语
T2M-GPT 是一个具有革命性意义的工具,它将文本与动作生成的技术推向了一个新的高度。无论你是动画制作人、游戏开发者,还是虚拟现实爱好者,T2M-GPT 都能为你提供强大的支持。赶快加入我们,体验从文本到动作的神奇转变吧!
项目链接:
引用:
@inproceedings{zhang2023generating,
title={T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations},
author={Zhang, Jianrong and Zhang, Yangsong and Cun, Xiaodong and Huang, Shaoli and Zhang, Yong and Zhao, Hongwei and Lu, Hongtao and Shen, Xi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023},
}
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5