探索视觉表示的新高度:MIL-NCE与PyTorch的HowTo100M训练框架
2024-06-08 05:18:59作者:申梦珏Efrain
在这个充满活力的AI时代,我们需要不断挖掘数据的潜力以推动技术的进步。MIL-NCE End-to-End HowTo100M training on GPUs with PyTorch是一个面向未来的项目,它提供了从未经整理的视频中学习视觉表示的强大工具。这个开源库基于CVPR'20的论文,为研究者和开发者提供了一个完全由PyTorch实现的分布式训练代码,使得在GPU上进行大规模视频理解任务变得更加易行。
项目简介
该项目旨在简化和重构原始的MIL-NCE模型的训练过程,原本依赖于Google和DeepMind的内部工具以及TPU加速器。如今,通过使用PyTorch和ffmpeg,它可以在多GPU环境中高效运行,并且能够适应各种集群管理系统。此外,项目还提供了一套完整的流程,包括数据准备、模型训练、线性评估以及零样本检索等。
技术分析
项目的核心是基于S3D的MIL-NCE模型,其设计目的是从HowTo100M的大量未标注视频中学习到通用的视觉表示。通过使用分布式训练策略,项目能够充分利用多GPU资源,提高训练效率。值得注意的是,该实现使用了余弦学习率衰减策略,以优化模型的学习曲线,并对不同GPU间不共享批归一化统计信息以提升性能。
应用场景
MIL-NCE和它的PyTorch实现可以广泛应用于多个领域:
- 视频理解:通过学习如何执行各种任务,模型可以用于预测视频内容、识别动作或事件。
- 自然语言处理:结合文本描述,可用于视频文本检索或生成。
- 计算机视觉研究:作为预训练模型,它可以为其他复杂的计算机视觉任务提供强大的特征提取基础。
项目特点
- 灵活性:代码库支持多种环境,包括SLURM集群管理,易于移植到其他系统。
- 效率优化:针对GPU进行了优化,如不共享批归一化,适应更广泛的硬件配置。
- 可复现性:提供了详细的步骤来下载和预处理数据,确保实验结果的可重现性。
- 全面性:不仅提供训练,还包括线性评估和零样本检索,以展示模型的泛化能力。
如果你正在寻找一个强大、灵活且可扩展的视频理解解决方案,或者只是对视频表示学习有浓厚的兴趣,那么这个项目绝对值得你的关注。让我们一起探索视觉智能的新边界,推动AI技术的进步。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1