VL-BERT:视觉语言任务的通用预训练模型
2024-09-17 21:54:02作者:幸俭卉
项目介绍
VL-BERT(Visual-Linguistic BERT)是由Weijie Su、Xizhou Zhu、Yue Cao、Bin Li、Lewei Lu、Furu Wei和Jifeng Dai等人开发的一个开源项目。该项目基于PyTorch框架,旨在为视觉语言任务提供一个简单而强大的预训练通用表示。VL-BERT通过在大规模图像描述数据集和纯文本语料库上进行预训练,能够为多种下游视觉语言任务(如视觉常识推理、视觉问答和指代表达理解)提供高效的微调支持。
项目技术分析
VL-BERT的核心技术在于其能够同时处理视觉和语言信息,通过预训练学习到通用的视觉语言表示。项目采用了分布式训练、FP16混合精度训练、多种优化器和学习率调度器、梯度累积等先进技术,确保了训练过程的高效性和稳定性。此外,项目还支持使用TensorboardX进行训练监控,方便开发者实时跟踪训练进度和性能。
项目及技术应用场景
VL-BERT的应用场景非常广泛,主要包括以下几个方面:
- 视觉常识推理(Visual Commonsense Reasoning):通过结合图像和文本信息,模型能够进行复杂的常识推理,适用于需要深度理解的视觉任务。
- 视觉问答(Visual Question Answering):模型能够根据图像内容回答相关问题,广泛应用于智能客服、教育辅助等领域。
- 指代表达理解(Referring Expression Comprehension):模型能够理解并定位图像中的特定对象,适用于图像检索、自动驾驶等场景。
项目特点
VL-BERT具有以下显著特点:
- 通用性:通过预训练,模型能够适应多种视觉语言任务,减少了针对特定任务的重新训练需求。
- 高效性:支持分布式训练和FP16混合精度训练,大幅提升了训练速度和资源利用率。
- 易用性:项目提供了详细的安装和使用指南,开发者可以轻松上手,快速部署和使用模型。
- 可视化:项目提供了可视化工具,帮助开发者直观地理解模型的内部工作机制和训练效果。
结语
VL-BERT作为一个前沿的视觉语言预训练模型,不仅在技术上具有领先优势,而且在实际应用中也展现出了巨大的潜力。无论你是研究者还是开发者,VL-BERT都值得你深入探索和使用。快来加入我们,一起推动视觉语言技术的发展吧!
参考文献:
@inproceedings{
Su2020VL-BERT:,
title={VL-BERT: Pre-training of Generic Visual-Linguistic Representations},
author={Weijie Su and Xizhou Zhu and Yue Cao and Bin Li and Lewei Lu and Furu Wei and Jifeng Dai},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=SygXPaEYvH}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
302
2.65 K
Ascend Extension for PyTorch
Python
131
153
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.44 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205