SwinTransformer/Video-Swin-Transformer模型导出ONNX格式完全指南
前言
在深度学习领域,模型部署是项目落地的重要环节。ONNX(Open Neural Network Exchange)作为一种开放的模型格式,能够帮助开发者实现跨框架的模型转换与部署。本文将详细介绍如何将SwinTransformer/Video-Swin-Transformer模型导出为ONNX格式,为后续的模型部署做好准备。
ONNX格式简介
ONNX是一种用于表示深度学习模型的开放格式,它定义了一组通用的运算符和标准数据类型,使得不同框架训练的模型可以在不同平台之间进行转换和运行。使用ONNX格式的主要优势包括:
- 跨框架兼容性:支持PyTorch、TensorFlow等多种框架
- 优化部署:可在多种推理引擎上运行,如ONNX Runtime、TensorRT等
- 简化部署流程:统一的中间表示格式
准备工作
在开始导出模型前,需要确保环境配置正确:
- 安装必要的Python包:
pip install onnx onnxruntime
-
确认已安装正确版本的PyTorch和MMAction2框架
-
准备训练好的模型权重文件(.pth格式)和对应的配置文件
模型导出步骤
1. 基础导出命令
对于SwinTransformer/Video-Swin-Transformer这类行为识别模型,基本的导出命令如下:
python tools/deployment/pytorch2onnx.py configs/recognition/swin/swin_base_patch244_window877_kinetics400_1k.py checkpoints/swin_base_patch244_window877_kinetics400_1k.pth --shape 1 1 3 32 224 224 --verify
2. 参数详解
configs/recognition/swin/...: 模型配置文件路径checkpoints/...: 训练好的模型权重路径--shape: 输入张量的形状,对于视频模型格式为$batch $clip $channel $time $height $width--verify: 导出后验证模型正确性--output-file: 指定输出文件名(默认为tmp.onnx)--opset-version: ONNX算子集版本(推荐11)
3. 输入形状说明
对于Video-Swin-Transformer这类3D视频模型,输入形状需要特别注意:
- batch size: 通常设为1进行测试
- clip数: 对于单clip推理设为1
- channel: 固定为3(RGB)
- time: 视频帧数(如32帧)
- height/width: 输入图像尺寸(如224x224)
示例形状:1 1 3 32 224 224
验证导出的ONNX模型
使用--verify参数后,脚本会自动进行以下验证:
- 检查模型是否能被ONNX Runtime正确加载
- 比较原始PyTorch模型和ONNX模型的输出结果差异
- 确保数值精度在可接受范围内
验证通过后,会输出类似以下信息:
All outputs are close with tolerance rtol=0.001, atol=1e-05
The model is exported successfully.
常见问题与解决方案
-
导出失败:
- 检查PyTorch和ONNX版本兼容性
- 确认模型配置和权重匹配
- 尝试降低opset版本
-
精度差异大:
- 检查输入数据预处理是否一致
- 尝试使用FP32精度导出
- 确认验证时使用了相同的输入数据
-
自定义操作不支持:
- 检查模型中是否包含ONNX不支持的操作
- 考虑重写相关操作或使用替代实现
高级技巧
-
动态轴支持: 如果需要支持可变长度的输入(如不同视频长度),可以修改导出脚本支持动态轴:
dynamic_axes = { 'input': {3: 'time'}, # 将时间维度设为动态 'output': {0: 'batch'} } torch.onnx.export(..., dynamic_axes=dynamic_axes) -
优化ONNX模型: 导出后可以使用ONNX Runtime提供的优化工具:
python -m onnxruntime.tools.convert_onnx_models_to_ort --optimize input.onnx -
量化导出: 为提升推理速度,可考虑导出量化后的ONNX模型:
torch.quantization.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
结语
通过本文介绍,您应该已经掌握了将SwinTransformer/Video-Swin-Transformer模型导出为ONNX格式的完整流程。ONNX作为模型部署的重要中间格式,能够大大简化后续的模型优化和跨平台部署工作。在实际应用中,建议根据目标部署平台的特点进行适当的模型优化和测试,以获得最佳性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00