MIDAS 开源项目使用教程
2024-09-22 16:12:38作者:侯霆垣
1. 项目目录结构及介绍
MIDAS 项目的目录结构如下:
MIDAS/
├── data/
│ ├── raw/
│ └── processed/
├── models/
│ ├── midas.py
│ └── utils.py
├── notebooks/
│ └── example.ipynb
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── config/
│ └── config.yaml
├── README.md
├── requirements.txt
└── setup.py
目录介绍
- data/: 存放数据文件的目录,包含原始数据 (
raw/
) 和处理后的数据 (processed/
)。 - models/: 存放模型相关的代码文件,
midas.py
是主模型文件,utils.py
包含一些辅助函数。 - notebooks/: 存放 Jupyter Notebook 文件,
example.ipynb
是一个示例 Notebook。 - scripts/: 存放脚本文件,
train.py
用于训练模型,evaluate.py
用于评估模型。 - config/: 存放配置文件,
config.yaml
是主要的配置文件。 - README.md: 项目的说明文档。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 用于安装项目的脚本。
2. 项目启动文件介绍
项目的启动文件主要是 scripts/train.py
和 scripts/evaluate.py
。
train.py
train.py
是用于训练模型的脚本。它读取配置文件 (config/config.yaml
) 中的参数,加载数据,初始化模型,并进行训练。训练完成后,模型会被保存到指定目录。
evaluate.py
evaluate.py
是用于评估模型的脚本。它加载训练好的模型,并使用测试数据进行评估,输出评估结果。
3. 项目配置文件介绍
项目的配置文件是 config/config.yaml
,它包含了模型的各种参数设置。
config.yaml
示例
data:
raw_data_path: "data/raw/dataset.csv"
processed_data_path: "data/processed/dataset.csv"
model:
hidden_size: 128
num_layers: 2
dropout: 0.2
training:
batch_size: 32
epochs: 10
learning_rate: 0.001
evaluation:
metrics: ["accuracy", "f1_score"]
配置文件参数介绍
- data: 数据相关的配置,包括原始数据路径 (
raw_data_path
) 和处理后的数据路径 (processed_data_path
)。 - model: 模型相关的配置,包括隐藏层大小 (
hidden_size
)、层数 (num_layers
) 和 dropout 率 (dropout
)。 - training: 训练相关的配置,包括批次大小 (
batch_size
)、训练轮数 (epochs
) 和学习率 (learning_rate
)。 - evaluation: 评估相关的配置,包括评估指标 (
metrics
)。
通过修改 config.yaml
文件中的参数,可以调整模型的行为和训练过程。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
198
279

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K