首页
/ 自监督几何感知(SGP):开创新篇章的深度学习框架

自监督几何感知(SGP):开创新篇章的深度学习框架

2024-06-10 20:07:20作者:伍霜盼Ellen

项目介绍

在计算机视觉领域,自我监督学习一直是研究热点之一。SGP(Self-supervised Geometric Perception),作为2021年计算机视觉顶级会议CVPR上的口头报告作品,开创性地提出了一个无需任何真实几何标签的监督就能进行特征学习的通用框架。这一突破性的方法利用了 Expectation-Maximization (EM) 算法的思想,通过迭代的伪标签生成与基于这些带噪声伪标签的特征学习过程,实现了自我监督下的强大几何特征提取。

SGP概述

项目技术分析

SGP的设计精妙之处在于其自监督循环机制。它首先使用初始特征估计几何模型,并由此产生初步的伪标签。接着,这些伪标签被用作训练数据,进一步优化特征表示。如此循环往复,不断提升特征质量和几何理解能力,最终达到即使没有直接的地面实况标签也能训练出高质量特征的效果。这种设计不仅减少了对昂贵的人工标注的依赖,也展示了自我监督学习在复杂几何任务中的巨大潜力。

项目及技术应用场景

SGP技术的应用领域广泛,特别是在两个关键场景中展现出了卓越性能:相机姿态估计点云配准

  • 相机姿态估计:SGP能够训练出如CAPS这样的深度图像特征,仅需通过5pt-RANSAC算法和SIFT这类经典手工艺特征初步估计的相对位姿来引导。这种方法不仅提高了相对姿态估计的鲁棒性,还降低了对人工注解的依赖。

    CAPS 应用示例 CAPS 应用示例

  • 点云注册:类似地,对于深层3D特征,如FCGF,在3pt-RANSAC辅助下,由FPFH特征初始化得到的伪标签训练,之后用于增强点云之间的配准效果,展现了其在处理实际大规模数据时的优势。

    FCGF 应用示例 FCGF 应用示例

项目特点

  • 无需监督:SGP最引人注目的特点是彻底摆脱了传统监督学习中对大量精确标签的依赖,极大地减轻了数据预处理的负担。
  • 自适应增强:通过自我反馈机制持续优化,即便是从原始或不完全准确的初始估计出发,也能逐步提升到高性能水平。
  • 广泛应用:无论是处理图像还是点云数据,SGP都表现出了强大的适用性和泛化能力,为机器人导航、自动驾驶、三维重建等多个领域提供了新的解决方案。
  • 理论与实践并重:结合深度学习与经典的几何估计理论,SGP证明了自我监督学习在解决复杂几何问题上的有效性,是对现有技术的重要补充和拓展。

SGP的开源代码及详细使用指南,为学术界和工业界提供了一个探索无监督几何感知前沿的强大工具箱。想要深入了解或应用此技术?访问项目仓库,开启你的自监督几何之旅!

[@引用文献]
@inproceedings{yang2021sgp,
  title={自监督几何感知},
  author={杨恒等},
  booktitle={CVPR},
  year={2021}
}

请注意,上述代码段应替换为正确的Markdown语法引用,以确保格式正确。SGP项目是一个革命性的技术进步,对于寻求在计算机视觉领域尤其是几何感知方面实现突破的研究人员和开发者而言,是不可多得的宝贵资源。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platformgo-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4