Caffeine缓存库中expireAfter与expireAfterWrite的行为差异分析
2025-05-13 13:21:07作者:伍霜盼Ellen
背景介绍
Caffeine是一个高性能的Java缓存库,广泛应用于需要高效缓存管理的场景。在实际使用中,开发者经常需要配置缓存的过期策略来优化系统性能。本文通过一个实际案例,分析Caffeine中两种不同过期策略的行为差异。
问题场景
在Kotlin项目中,开发者最初使用expireAfterWrite配置缓存,设置固定10分钟的过期时间。这种配置下,缓存项会在写入后10分钟统一过期,导致系统在同一时间点面临大量缓存重建请求,形成"缓存雪崩"效应。
为了缓解这个问题,开发者尝试改用expireAfter策略,期望实现缓存项在5-15分钟之间随机过期。然而实际运行中发现,缓存项似乎永远不会过期,与预期行为不符。
技术实现分析
初始配置
最初的缓存配置使用expireAfterWrite:
Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10.minutes)
.recordStats()
.buildAsync { k, _ -> coroutineScope.future { Box(loader(k)) } }
这种配置简单直接,所有缓存项在写入10分钟后统一过期。
改进尝试
开发者尝试改用随机过期时间的策略:
fun expireRandomDurationAfterCreate(min: Duration, max: Duration) = object : Expiry<String, Boolean> {
override fun expireAfterCreate(key: String, value: Boolean, currentTime: Long) =
randomDurationNanos(min, max)
override fun expireAfterUpdate(key: String, value: Boolean, currentTime: Long, currentDuration: Long) =
currentDuration
override fun expireAfterRead(key: String, value: Boolean, currentTime: Long, currentDuration: Long) =
currentDuration
}
Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfter(expireRandomDurationAfterCreate(5.minutes, 15.minutes))
.scheduler(Scheduler.systemScheduler())
.recordStats()
.buildAsync { k, _ -> coroutineScope.future { Box(loader(k)) } }
问题根源
经过深入排查,发现问题出在Expiry接口的泛型参数类型不匹配。虽然代码能够编译通过,但由于类型不匹配导致过期策略未能正确应用。
正确的实现应该匹配缓存值的实际类型Box<Boolean>:
object : Expiry<String, Box<Boolean>> {
// 方法实现保持不变
}
技术要点解析
-
expireAfterWrite与expireAfter的区别:
expireAfterWrite:所有缓存项使用相同的固定过期时间expireAfter:允许为每个缓存项定制不同的过期策略
-
Expiry接口的正确使用:
- 必须确保泛型参数与实际缓存值类型完全匹配
- 需要实现三个关键方法:创建后、更新后和读取后的过期时间计算
-
缓存雪崩的预防:
- 随机过期时间是防止缓存集体失效的有效手段
- 也可以考虑使用
refreshAfterWrite实现后台刷新
最佳实践建议
- 在使用自定义Expiry策略时,务必仔细检查泛型参数类型
- 对于需要分散过期时间的场景,除了随机过期策略,还可以考虑:
- 分层缓存策略
- 提前刷新机制
- 批量加载优化
- 建议使用
Ticker进行单元测试,验证过期行为是否符合预期
总结
通过这个案例我们可以看到,Caffeine提供了灵活的缓存过期策略配置,但需要开发者正确理解和使用。特别是当使用高级特性如自定义Expiry时,类型系统的严格匹配是保证功能正常的关键。合理配置缓存过期策略不仅能提升系统性能,还能有效避免缓存雪崩等问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869