Caffeine缓存库中expireAfter与expireAfterWrite的行为差异分析
2025-05-13 19:41:14作者:伍霜盼Ellen
背景介绍
Caffeine是一个高性能的Java缓存库,广泛应用于需要高效缓存管理的场景。在实际使用中,开发者经常需要配置缓存的过期策略来优化系统性能。本文通过一个实际案例,分析Caffeine中两种不同过期策略的行为差异。
问题场景
在Kotlin项目中,开发者最初使用expireAfterWrite配置缓存,设置固定10分钟的过期时间。这种配置下,缓存项会在写入后10分钟统一过期,导致系统在同一时间点面临大量缓存重建请求,形成"缓存雪崩"效应。
为了缓解这个问题,开发者尝试改用expireAfter策略,期望实现缓存项在5-15分钟之间随机过期。然而实际运行中发现,缓存项似乎永远不会过期,与预期行为不符。
技术实现分析
初始配置
最初的缓存配置使用expireAfterWrite:
Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10.minutes)
.recordStats()
.buildAsync { k, _ -> coroutineScope.future { Box(loader(k)) } }
这种配置简单直接,所有缓存项在写入10分钟后统一过期。
改进尝试
开发者尝试改用随机过期时间的策略:
fun expireRandomDurationAfterCreate(min: Duration, max: Duration) = object : Expiry<String, Boolean> {
override fun expireAfterCreate(key: String, value: Boolean, currentTime: Long) =
randomDurationNanos(min, max)
override fun expireAfterUpdate(key: String, value: Boolean, currentTime: Long, currentDuration: Long) =
currentDuration
override fun expireAfterRead(key: String, value: Boolean, currentTime: Long, currentDuration: Long) =
currentDuration
}
Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfter(expireRandomDurationAfterCreate(5.minutes, 15.minutes))
.scheduler(Scheduler.systemScheduler())
.recordStats()
.buildAsync { k, _ -> coroutineScope.future { Box(loader(k)) } }
问题根源
经过深入排查,发现问题出在Expiry接口的泛型参数类型不匹配。虽然代码能够编译通过,但由于类型不匹配导致过期策略未能正确应用。
正确的实现应该匹配缓存值的实际类型Box<Boolean>:
object : Expiry<String, Box<Boolean>> {
// 方法实现保持不变
}
技术要点解析
-
expireAfterWrite与expireAfter的区别:
expireAfterWrite:所有缓存项使用相同的固定过期时间expireAfter:允许为每个缓存项定制不同的过期策略
-
Expiry接口的正确使用:
- 必须确保泛型参数与实际缓存值类型完全匹配
- 需要实现三个关键方法:创建后、更新后和读取后的过期时间计算
-
缓存雪崩的预防:
- 随机过期时间是防止缓存集体失效的有效手段
- 也可以考虑使用
refreshAfterWrite实现后台刷新
最佳实践建议
- 在使用自定义Expiry策略时,务必仔细检查泛型参数类型
- 对于需要分散过期时间的场景,除了随机过期策略,还可以考虑:
- 分层缓存策略
- 提前刷新机制
- 批量加载优化
- 建议使用
Ticker进行单元测试,验证过期行为是否符合预期
总结
通过这个案例我们可以看到,Caffeine提供了灵活的缓存过期策略配置,但需要开发者正确理解和使用。特别是当使用高级特性如自定义Expiry时,类型系统的严格匹配是保证功能正常的关键。合理配置缓存过期策略不仅能提升系统性能,还能有效避免缓存雪崩等问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
645
149
Ascend Extension for PyTorch
Python
207
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873