Caffeine缓存库中刷新异常导致后续刷新失效问题分析
2025-05-13 03:21:43作者:龚格成
问题背景
在使用Caffeine缓存库时,开发者发现当缓存值刷新过程中抛出RuntimeException异常后,后续的自动刷新操作将不再执行,直到缓存项过期或被显式移除。这一行为在某些业务场景下可能导致缓存数据长时间得不到更新,影响系统数据一致性。
问题复现
通过一个简单的测试用例可以复现该问题:
@Test
public void refreshingCacheWithRuntimeException() throws InterruptedException {
RuntimeExceptionTestCacheLoader loader = Mockito.spy(new RuntimeExceptionTestCacheLoader());
LoadingCache<String, String> cache = Caffeine.newBuilder()
.refreshAfterWrite(Duration.ofNanos(1))
.expireAfterWrite(Duration.ofSeconds(1))
.build(loader::apply);
cache.put("key", "value");
String value = cache.get("key");
assertEquals("value", value);
verify(loader, timeout(1000).times(1)).apply("key");
value = cache.get("key");
assertEquals("value", value);
// 这里预期应该触发第二次刷新,但实际没有
verify(loader, timeout(1000).times(2)).apply("key");
}
其中RuntimeExceptionTestCacheLoader是一个简单的加载器实现,总是抛出RuntimeException。
问题本质
经过深入分析,这个问题实际上是由于测试用例中的竞态条件导致的,而非Caffeine库本身的缺陷。关键在于:
- Caffeine的刷新操作默认是异步执行的,使用ForkJoinPool作为默认执行器
- 测试中使用了
timeout验证,但没有等待异步操作完成 - 当使用同步执行器(
Runnable::run)或显式等待刷新完成时,问题不复现
解决方案
针对这个问题,开发者可以采用以下几种解决方案:
方案一:使用同步执行器
LoadingCache<String, String> cache = Caffeine.newBuilder()
.executor(Runnable::run) // 同步执行
.refreshAfterWrite(Duration.ofNanos(1))
.expireAfterWrite(Duration.ofSeconds(1))
.build(loader::apply);
方案二:显式等待刷新完成
// 在验证前等待刷新完成
await().until(() -> cache.policy().refreshes().isEmpty());
verify(loader, timeout(1000).times(2)).apply("key");
方案三:使用更可靠的测试工具
推荐使用FakeTicker和Awaitility等工具来管理时间和并发,避免使用Thread.sleep()这种不可靠的方式。
最佳实践
- 测试异步代码:当测试涉及异步操作的代码时,务必确保测试方法能够等待异步操作完成
- 理解刷新机制:Caffeine的刷新是异步的,且失败不会影响当前缓存值
- 异常处理:虽然刷新失败不会阻止后续刷新,但应考虑实现适当的重试机制
- 监控刷新状态:通过
cache.policy().refreshes()可以监控正在进行的刷新操作
总结
这个问题很好地展示了在测试异步代码时可能遇到的陷阱。通过深入分析,我们发现这不是Caffeine库的缺陷,而是测试方法需要适应异步执行模型。理解这一点对于正确使用Caffeine的刷新功能至关重要,特别是在生产环境中需要确保数据一致性的场景。
对于开发者来说,掌握如何正确测试异步代码、理解缓存库的内部工作机制,以及选择适当的测试工具,都是构建可靠缓存层的关键技能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
83
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
997
588
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
114
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26