探索长尾识别新高度:Boosted Contrastive Learning (BCL) 项目推荐
2024-09-23 09:42:39作者:瞿蔚英Wynne
项目介绍
在机器学习领域,长尾分布(Long-Tailed Distribution)是一个常见但极具挑战性的问题。传统的自监督学习方法在处理这种分布时往往表现不佳,因为它们主要在均衡的数据集上进行验证。为了解决这一问题,Boosted Contrastive Learning (BCL) 项目应运而生。BCL 项目由 Zhou 等人在 ICML 2022 上提出,旨在通过增强记忆效应来改进自监督学习在长尾数据集上的表现。
项目技术分析
BCL 项目的技术核心在于利用深度神经网络的记忆效应,自动驱动对比学习中的样本视图信息差异。具体来说,BCL 通过以下几个关键技术点实现其目标:
- 记忆效应利用:BCL 利用深度神经网络的记忆效应,自动识别并增强长尾数据中的尾部样本。
- 对比学习优化:通过对比学习框架,BCL 能够更有效地处理长尾分布数据,提升模型在尾部样本上的表现。
- 自适应权重更新:在训练过程中,BCL 动态更新样本的权重,确保尾部样本得到足够的关注。
项目及技术应用场景
BCL 项目适用于多种实际应用场景,特别是在以下领域:
- 图像识别:在图像识别任务中,数据集往往呈现长尾分布,BCL 能够显著提升模型在尾部类别上的识别准确率。
- 自然语言处理:在文本分类任务中,某些类别的样本数量较少,BCL 可以帮助模型更好地学习这些类别的特征。
- 推荐系统:在推荐系统中,某些冷门商品或用户行为较少,BCL 可以增强模型对这些冷门商品或用户行为的理解。
项目特点
BCL 项目具有以下显著特点:
- 高效性:通过自动驱动信息差异,BCL 在处理长尾数据时表现出色,显著优于现有方法。
- 灵活性:BCL 不仅适用于图像数据,还可以扩展到文本和其他类型的数据,具有广泛的适用性。
- 易用性:项目提供了详细的代码实现和使用指南,用户可以轻松上手并进行实验。
结语
Boosted Contrastive Learning (BCL) 项目为解决长尾分布问题提供了一种新颖且有效的方法。无论是在学术研究还是实际应用中,BCL 都展现出了巨大的潜力。我们鼓励广大开发者和技术爱好者尝试并应用这一项目,共同推动机器学习技术的发展。
项目地址: Contrastive Learning with Boosted Memorization
参考文献:
@inproceedings{zhou2022contrastive,
title={Contrastive Learning with Boosted Memorization},
author={Zhou, Zhihan and Yao, Jiangchao and Wang, Yan-Feng and Han, Bo and Zhang, Ya},
booktitle={International Conference on Machine Learning},
pages={27367--27377},
year={2022},
organization={PMLR}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250