BCL(Boosted Contrastive Learning)项目安装与使用指南
2024-09-27 18:31:30作者:郁楠烈Hubert
项目概述
BCL 是一个在ICML2022上发表的开源项目,它提出了一种名为“增强的对比学习”(Boosted Contrastive Learning)的方法,用于解决视觉数据中的长尾分布识别问题。这种方法利用深度神经网络的记忆化效应来自动驱动样本视图间信息差异的增强,尤其适用于无标签环境下增强长期学习的效果。
1. 目录结构及介绍
以下是项目的基本目录结构及其简要说明:
Boosted-Contrastive-Learning
├── README.md - 项目说明文档
├── data - 数据集相关脚本,包括数据处理和增广
│ ├── memoboosted_cifar100.py
│ ├── cifar100.py
│ ├── augmentations.py
│ └── randaug.py
├── models - 模型定义文件夹
│ ├── simclr.py
│ ├── sdclr.py
│ ├── resnet.py
│ ├── resnet_prune_multibn.py
│ └── utils.py
├── losses - 用于损失计算的相关模块
│ └── nt_xent.py
├── split - 数据切分脚本
│ ├── cifar100
│ └── cifar100_imbSub_with_subsets
├── eval_cifar.py - 线性评估代码
├── test.py - 测试脚本
├── train.py - 训练主程序
├── train_sdclr.py - SDCLR训练程序
└── utils.py - 工具函数集合
2. 项目的启动文件介绍
主要启动文件:train.py 和 train_sdclr.py
- train.py: 这是用于普通Contrastive Learning模型如SimCLR的训练脚本。
- train_sdclr.py: 专门用于SDCLR模型的训练,支持BCL的特定实现,即增强对比学习方法。
执行这些脚本前,需确保已设置好环境变量和配置文件指定的数据路径等。
示例运行命令:
以训练BCL的一个变体(BCL-I)为例:
python train.py BCL_I --bcl --rand_k 1 --lr 0.5 --epochs 2000 ...
注意:
- 需要预先下载或准备CIFAR-100等基准数据集,并进行适当的不平衡分割。
- 修改配置参数以匹配您的实验需求,如学习率(
lr)、迭代次数(epochs)等。
3. 项目的配置文件介绍
该项目没有明显的单一配置文件,而是通过命令行参数直接传递配置。关键的配置主要通过调用脚本时的参数指定,例如学习率、模型类型、数据路径、训练周期等。这意味着,配置是在运行脚本时动态设定的。
为了更灵活的配置管理,用户可以考虑以下实践:
- 环境变量:设置环境变量来指定通用路径,比如数据存储位置。
- 脚本内配置:在
train.py或辅助函数中,可以根据需要添加更多的逻辑分支,实现配置选项的个性化。 - 外部配置文件:虽然当前版本未直接提供,但用户可自行创建
.yaml或.json文件存放配置,并在脚本开头读取这些文件,然后按需传递给训练过程。
以上就是关于BCL项目的基本使用与配置说明,确保遵循项目的官方文档和示例命令,以顺利完成项目搭建与实验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355