BCL(Boosted Contrastive Learning)项目安装与使用指南
2024-09-27 00:28:06作者:郁楠烈Hubert
项目概述
BCL 是一个在ICML2022上发表的开源项目,它提出了一种名为“增强的对比学习”(Boosted Contrastive Learning)的方法,用于解决视觉数据中的长尾分布识别问题。这种方法利用深度神经网络的记忆化效应来自动驱动样本视图间信息差异的增强,尤其适用于无标签环境下增强长期学习的效果。
1. 目录结构及介绍
以下是项目的基本目录结构及其简要说明:
Boosted-Contrastive-Learning
├── README.md - 项目说明文档
├── data - 数据集相关脚本,包括数据处理和增广
│ ├── memoboosted_cifar100.py
│ ├── cifar100.py
│ ├── augmentations.py
│ └── randaug.py
├── models - 模型定义文件夹
│ ├── simclr.py
│ ├── sdclr.py
│ ├── resnet.py
│ ├── resnet_prune_multibn.py
│ └── utils.py
├── losses - 用于损失计算的相关模块
│ └── nt_xent.py
├── split - 数据切分脚本
│ ├── cifar100
│ └── cifar100_imbSub_with_subsets
├── eval_cifar.py - 线性评估代码
├── test.py - 测试脚本
├── train.py - 训练主程序
├── train_sdclr.py - SDCLR训练程序
└── utils.py - 工具函数集合
2. 项目的启动文件介绍
主要启动文件:train.py
和 train_sdclr.py
- train.py: 这是用于普通Contrastive Learning模型如SimCLR的训练脚本。
- train_sdclr.py: 专门用于SDCLR模型的训练,支持BCL的特定实现,即增强对比学习方法。
执行这些脚本前,需确保已设置好环境变量和配置文件指定的数据路径等。
示例运行命令:
以训练BCL的一个变体(BCL-I)为例:
python train.py BCL_I --bcl --rand_k 1 --lr 0.5 --epochs 2000 ...
注意:
- 需要预先下载或准备CIFAR-100等基准数据集,并进行适当的不平衡分割。
- 修改配置参数以匹配您的实验需求,如学习率(
lr
)、迭代次数(epochs
)等。
3. 项目的配置文件介绍
该项目没有明显的单一配置文件,而是通过命令行参数直接传递配置。关键的配置主要通过调用脚本时的参数指定,例如学习率、模型类型、数据路径、训练周期等。这意味着,配置是在运行脚本时动态设定的。
为了更灵活的配置管理,用户可以考虑以下实践:
- 环境变量:设置环境变量来指定通用路径,比如数据存储位置。
- 脚本内配置:在
train.py
或辅助函数中,可以根据需要添加更多的逻辑分支,实现配置选项的个性化。 - 外部配置文件:虽然当前版本未直接提供,但用户可自行创建
.yaml
或.json
文件存放配置,并在脚本开头读取这些文件,然后按需传递给训练过程。
以上就是关于BCL项目的基本使用与配置说明,确保遵循项目的官方文档和示例命令,以顺利完成项目搭建与实验。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44