BCL(Boosted Contrastive Learning)项目安装与使用指南
2024-09-27 18:03:15作者:郁楠烈Hubert
项目概述
BCL 是一个在ICML2022上发表的开源项目,它提出了一种名为“增强的对比学习”(Boosted Contrastive Learning)的方法,用于解决视觉数据中的长尾分布识别问题。这种方法利用深度神经网络的记忆化效应来自动驱动样本视图间信息差异的增强,尤其适用于无标签环境下增强长期学习的效果。
1. 目录结构及介绍
以下是项目的基本目录结构及其简要说明:
Boosted-Contrastive-Learning
├── README.md - 项目说明文档
├── data - 数据集相关脚本,包括数据处理和增广
│ ├── memoboosted_cifar100.py
│ ├── cifar100.py
│ ├── augmentations.py
│ └── randaug.py
├── models - 模型定义文件夹
│ ├── simclr.py
│ ├── sdclr.py
│ ├── resnet.py
│ ├── resnet_prune_multibn.py
│ └── utils.py
├── losses - 用于损失计算的相关模块
│ └── nt_xent.py
├── split - 数据切分脚本
│ ├── cifar100
│ └── cifar100_imbSub_with_subsets
├── eval_cifar.py - 线性评估代码
├── test.py - 测试脚本
├── train.py - 训练主程序
├── train_sdclr.py - SDCLR训练程序
└── utils.py - 工具函数集合
2. 项目的启动文件介绍
主要启动文件:train.py
和 train_sdclr.py
- train.py: 这是用于普通Contrastive Learning模型如SimCLR的训练脚本。
- train_sdclr.py: 专门用于SDCLR模型的训练,支持BCL的特定实现,即增强对比学习方法。
执行这些脚本前,需确保已设置好环境变量和配置文件指定的数据路径等。
示例运行命令:
以训练BCL的一个变体(BCL-I)为例:
python train.py BCL_I --bcl --rand_k 1 --lr 0.5 --epochs 2000 ...
注意:
- 需要预先下载或准备CIFAR-100等基准数据集,并进行适当的不平衡分割。
- 修改配置参数以匹配您的实验需求,如学习率(
lr
)、迭代次数(epochs
)等。
3. 项目的配置文件介绍
该项目没有明显的单一配置文件,而是通过命令行参数直接传递配置。关键的配置主要通过调用脚本时的参数指定,例如学习率、模型类型、数据路径、训练周期等。这意味着,配置是在运行脚本时动态设定的。
为了更灵活的配置管理,用户可以考虑以下实践:
- 环境变量:设置环境变量来指定通用路径,比如数据存储位置。
- 脚本内配置:在
train.py
或辅助函数中,可以根据需要添加更多的逻辑分支,实现配置选项的个性化。 - 外部配置文件:虽然当前版本未直接提供,但用户可自行创建
.yaml
或.json
文件存放配置,并在脚本开头读取这些文件,然后按需传递给训练过程。
以上就是关于BCL项目的基本使用与配置说明,确保遵循项目的官方文档和示例命令,以顺利完成项目搭建与实验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
465

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
132
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
876
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
610
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4