BSP-NET PyTorch: 开源项目最佳实践
2025-05-21 19:46:16作者:伍希望
1. 项目介绍
BSP-NET PyTorch 是一个基于 PyTorch 的开源项目,实现了 BSP-Net 算法。BSP-Net 是一种通过二分空间划分生成紧凑网格的算法。该项目由 Zhiqin Chen、Andrea Tagliasacchi 和 Hao Zhang 提出,并在 2020 年的 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 上发表。
项目主要包含一个神经网络,该网络能够从点云数据中生成 3D 网格。它首先训练一个自动编码器(AE)来学习点云数据的潜在表示,然后使用单视图重建(SVR)模型来从单个视图中重建 3D 对象。
2. 项目快速启动
在开始之前,确保你已经安装了以下依赖项:
- Python 3.6 或更高版本
- NumPy
- h5py
- Cython
- PyTorch 1.2
- PyMCubes(用于 Marching Cubes 算法)
以下是如何构建和运行项目的步骤:
首先,克隆仓库:
git clone https://github.com/czq142857/BSP-NET-pytorch.git
cd BSP-NET-pytorch
然后,编译 bspt 模块:
python setup.py build_ext --inplace
如果编译失败,你可以在代码中替换 from bspt import ... 为 from bspt_slow import ...,使用 Python 实现的较慢版本。
接下来,使用以下命令训练自动编码器:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
此命令将在 16x16x16 的分辨率下训练 AE 模型 8000000 次迭代。类似地,你可以调整 --sample_dir 和 --sample_vox_size 参数来在不同的分辨率下训练。
训练完成后,你可以使用以下命令查看一些测试结果:
python main.py --ae --phase 0 --sample_dir samples/all_vox256_img0_16 --start 0 --end 16
3. 应用案例和最佳实践
应用案例
- 3D 对象重建:使用 BSP-Net 从单个视图或多个视图重建 3D 对象。
- 3D 网格生成:将点云数据转换为高质量的 3D 网格。
最佳实践
- 数据准备:确保你的点云数据已经被预处理,并且已经按照 IM-NET 的
point_sampling脚本进行了采样。 - 分阶段训练:先在连续阶段(phase 0)训练,然后根据需要转移到硬离散化(phase 1)、带重叠的硬离散化(phase 2)、软离散化(phase 3)或带重叠的软离散化(phase 4)阶段。
- 性能评估:使用项目提供的评估脚本来计算 Chamfer Distance 和 Normal Consistency。
4. 典型生态项目
- TensorFlow 实现:项目的 TensorFlow 版本,提供静态图和即时执行两种模式。
- 其他工具和库:如 PyMCubes 用于 Marching Cubes 算法,用于从体素数据生成网格。
以上就是关于 BSP-NET PyTorch 项目的最佳实践指南。希望这能帮助你更好地理解和利用这个强大的开源项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669