BSP-NET PyTorch: 开源项目最佳实践
2025-05-21 22:34:57作者:伍希望
1. 项目介绍
BSP-NET PyTorch 是一个基于 PyTorch 的开源项目,实现了 BSP-Net 算法。BSP-Net 是一种通过二分空间划分生成紧凑网格的算法。该项目由 Zhiqin Chen、Andrea Tagliasacchi 和 Hao Zhang 提出,并在 2020 年的 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 上发表。
项目主要包含一个神经网络,该网络能够从点云数据中生成 3D 网格。它首先训练一个自动编码器(AE)来学习点云数据的潜在表示,然后使用单视图重建(SVR)模型来从单个视图中重建 3D 对象。
2. 项目快速启动
在开始之前,确保你已经安装了以下依赖项:
- Python 3.6 或更高版本
- NumPy
- h5py
- Cython
- PyTorch 1.2
- PyMCubes(用于 Marching Cubes 算法)
以下是如何构建和运行项目的步骤:
首先,克隆仓库:
git clone https://github.com/czq142857/BSP-NET-pytorch.git
cd BSP-NET-pytorch
然后,编译 bspt
模块:
python setup.py build_ext --inplace
如果编译失败,你可以在代码中替换 from bspt import ...
为 from bspt_slow import ...
,使用 Python 实现的较慢版本。
接下来,使用以下命令训练自动编码器:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
此命令将在 16x16x16 的分辨率下训练 AE 模型 8000000 次迭代。类似地,你可以调整 --sample_dir
和 --sample_vox_size
参数来在不同的分辨率下训练。
训练完成后,你可以使用以下命令查看一些测试结果:
python main.py --ae --phase 0 --sample_dir samples/all_vox256_img0_16 --start 0 --end 16
3. 应用案例和最佳实践
应用案例
- 3D 对象重建:使用 BSP-Net 从单个视图或多个视图重建 3D 对象。
- 3D 网格生成:将点云数据转换为高质量的 3D 网格。
最佳实践
- 数据准备:确保你的点云数据已经被预处理,并且已经按照 IM-NET 的
point_sampling
脚本进行了采样。 - 分阶段训练:先在连续阶段(phase 0)训练,然后根据需要转移到硬离散化(phase 1)、带重叠的硬离散化(phase 2)、软离散化(phase 3)或带重叠的软离散化(phase 4)阶段。
- 性能评估:使用项目提供的评估脚本来计算 Chamfer Distance 和 Normal Consistency。
4. 典型生态项目
- TensorFlow 实现:项目的 TensorFlow 版本,提供静态图和即时执行两种模式。
- 其他工具和库:如 PyMCubes 用于 Marching Cubes 算法,用于从体素数据生成网格。
以上就是关于 BSP-NET PyTorch 项目的最佳实践指南。希望这能帮助你更好地理解和利用这个强大的开源项目。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp课程视频测验中的Tab键导航问题解析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

React Native鸿蒙化仓库
C++
195
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71