BSP-NET PyTorch: 开源项目最佳实践
2025-05-21 09:01:43作者:伍希望
1. 项目介绍
BSP-NET PyTorch 是一个基于 PyTorch 的开源项目,实现了 BSP-Net 算法。BSP-Net 是一种通过二分空间划分生成紧凑网格的算法。该项目由 Zhiqin Chen、Andrea Tagliasacchi 和 Hao Zhang 提出,并在 2020 年的 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 上发表。
项目主要包含一个神经网络,该网络能够从点云数据中生成 3D 网格。它首先训练一个自动编码器(AE)来学习点云数据的潜在表示,然后使用单视图重建(SVR)模型来从单个视图中重建 3D 对象。
2. 项目快速启动
在开始之前,确保你已经安装了以下依赖项:
- Python 3.6 或更高版本
- NumPy
- h5py
- Cython
- PyTorch 1.2
- PyMCubes(用于 Marching Cubes 算法)
以下是如何构建和运行项目的步骤:
首先,克隆仓库:
git clone https://github.com/czq142857/BSP-NET-pytorch.git
cd BSP-NET-pytorch
然后,编译 bspt
模块:
python setup.py build_ext --inplace
如果编译失败,你可以在代码中替换 from bspt import ...
为 from bspt_slow import ...
,使用 Python 实现的较慢版本。
接下来,使用以下命令训练自动编码器:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
此命令将在 16x16x16 的分辨率下训练 AE 模型 8000000 次迭代。类似地,你可以调整 --sample_dir
和 --sample_vox_size
参数来在不同的分辨率下训练。
训练完成后,你可以使用以下命令查看一些测试结果:
python main.py --ae --phase 0 --sample_dir samples/all_vox256_img0_16 --start 0 --end 16
3. 应用案例和最佳实践
应用案例
- 3D 对象重建:使用 BSP-Net 从单个视图或多个视图重建 3D 对象。
- 3D 网格生成:将点云数据转换为高质量的 3D 网格。
最佳实践
- 数据准备:确保你的点云数据已经被预处理,并且已经按照 IM-NET 的
point_sampling
脚本进行了采样。 - 分阶段训练:先在连续阶段(phase 0)训练,然后根据需要转移到硬离散化(phase 1)、带重叠的硬离散化(phase 2)、软离散化(phase 3)或带重叠的软离散化(phase 4)阶段。
- 性能评估:使用项目提供的评估脚本来计算 Chamfer Distance 和 Normal Consistency。
4. 典型生态项目
- TensorFlow 实现:项目的 TensorFlow 版本,提供静态图和即时执行两种模式。
- 其他工具和库:如 PyMCubes 用于 Marching Cubes 算法,用于从体素数据生成网格。
以上就是关于 BSP-NET PyTorch 项目的最佳实践指南。希望这能帮助你更好地理解和利用这个强大的开源项目。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0130AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401