BSP-NET PyTorch: 开源项目最佳实践
2025-05-21 10:09:21作者:伍希望
1. 项目介绍
BSP-NET PyTorch 是一个基于 PyTorch 的开源项目,实现了 BSP-Net 算法。BSP-Net 是一种通过二分空间划分生成紧凑网格的算法。该项目由 Zhiqin Chen、Andrea Tagliasacchi 和 Hao Zhang 提出,并在 2020 年的 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 上发表。
项目主要包含一个神经网络,该网络能够从点云数据中生成 3D 网格。它首先训练一个自动编码器(AE)来学习点云数据的潜在表示,然后使用单视图重建(SVR)模型来从单个视图中重建 3D 对象。
2. 项目快速启动
在开始之前,确保你已经安装了以下依赖项:
- Python 3.6 或更高版本
- NumPy
- h5py
- Cython
- PyTorch 1.2
- PyMCubes(用于 Marching Cubes 算法)
以下是如何构建和运行项目的步骤:
首先,克隆仓库:
git clone https://github.com/czq142857/BSP-NET-pytorch.git
cd BSP-NET-pytorch
然后,编译 bspt 模块:
python setup.py build_ext --inplace
如果编译失败,你可以在代码中替换 from bspt import ... 为 from bspt_slow import ...,使用 Python 实现的较慢版本。
接下来,使用以下命令训练自动编码器:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
此命令将在 16x16x16 的分辨率下训练 AE 模型 8000000 次迭代。类似地,你可以调整 --sample_dir 和 --sample_vox_size 参数来在不同的分辨率下训练。
训练完成后,你可以使用以下命令查看一些测试结果:
python main.py --ae --phase 0 --sample_dir samples/all_vox256_img0_16 --start 0 --end 16
3. 应用案例和最佳实践
应用案例
- 3D 对象重建:使用 BSP-Net 从单个视图或多个视图重建 3D 对象。
- 3D 网格生成:将点云数据转换为高质量的 3D 网格。
最佳实践
- 数据准备:确保你的点云数据已经被预处理,并且已经按照 IM-NET 的
point_sampling脚本进行了采样。 - 分阶段训练:先在连续阶段(phase 0)训练,然后根据需要转移到硬离散化(phase 1)、带重叠的硬离散化(phase 2)、软离散化(phase 3)或带重叠的软离散化(phase 4)阶段。
- 性能评估:使用项目提供的评估脚本来计算 Chamfer Distance 和 Normal Consistency。
4. 典型生态项目
- TensorFlow 实现:项目的 TensorFlow 版本,提供静态图和即时执行两种模式。
- 其他工具和库:如 PyMCubes 用于 Marching Cubes 算法,用于从体素数据生成网格。
以上就是关于 BSP-NET PyTorch 项目的最佳实践指南。希望这能帮助你更好地理解和利用这个强大的开源项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.65 K
Ascend Extension for PyTorch
Python
130
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
192
React Native鸿蒙化仓库
JavaScript
229
307
暂无简介
Dart
592
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
504
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
180
65
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456