BSP-NET PyTorch 项目启动与配置教程
2025-05-21 21:48:25作者:宣海椒Queenly
1. 项目目录结构及介绍
BSP-NET PyTorch 项目目录结构如下:
BSP-NET-pytorch/
├── checkpoint/ # 存储训练好的模型权重
├── data/ # 存储数据集
├── img/ # 存储图像数据
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── bspt.pyx # Cython 实现的 BSP 树恢复模块
├── bspt_slow.py # Python 实现的慢速 BSP 树恢复模块(用于调试)
├── main.py # 项目的主程序
├── modelAE.py # 自编码器模型定义
├── modelSVR.py # SVR 模型定义
├── setup.py # Cython 模块编译脚本
├── test_ae.sh # 测试自编码器的脚本
├── test_svr.sh # 测试 SVR 的脚本
├── train_ae.sh # 训练自编码器的脚本
├── train_svr.sh # 训练 SVR 的脚本
└── utils.py # 通用工具模块
checkpoint/:此目录用于存放训练过程中保存的模型权重文件。data/:存放项目所需的数据集文件。img/:存储项目使用的图像数据。LICENSE:项目的开源许可证文件,本项目采用 MIT 许可证。README.md:项目的说明文档,介绍了项目的详细信息。bspt.pyx和bspt_slow.py:分别是用 Cython 和 Python 实现的 BSP 树恢复模块,后者速度较慢,但易于调试。main.py:项目的主程序文件,包含了模型的训练和测试逻辑。modelAE.py和modelSVR.py:定义了自编码器模型和 SVR 模型的结构和实现。setup.py:用于编译 Cython 模块的脚本。test_ae.sh和test_svr.sh:分别是用于测试自编码器和 SVR 模型的 shell 脚本。train_ae.sh和train_svr.sh:分别是用于训练自编码器和 SVR 模型的 shell 脚本。utils.py:提供了一些项目通用的工具函数。
2. 项目的启动文件介绍
项目的启动主要是通过 main.py 文件来实现的。该文件包含了模型的训练和测试的主要逻辑。以下是一个简单的启动示例:
# 训练自编码器模型
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
该命令将开始训练自编码器模型,使用 --ae 参数指定模型类型,--train 参数指定训练模式,--phase 0 指定训练阶段,--iteration 8000000 指定迭代次数,--sample_dir 指定数据集目录,--sample_vox_size 指定体素大小。
3. 项目的配置文件介绍
本项目使用 Python 的命令行参数来配置训练和测试的选项。在 main.py 文件中,可以使用 flags 来定义和解析命令行参数。以下是一个配置参数的示例:
import flags
FLAGS = flags.FLAGS
# 定义命令行参数
FLAGS.DEFINE_string('sample_dir', '', '样本目录')
FLAGS.DEFINE_integer('sample_vox_size', 32, '体素大小')
FLAGS.DEFINE_integer('iteration', 8000000, '迭代次数')
FLAGS.DEFINE_string('phase', '0', '训练阶段')
在运行训练或测试脚本时,可以通过命令行传递这些参数来配置项目。例如:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
这样,用户可以通过命令行灵活地配置和启动项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1