BSP-NET PyTorch 项目启动与配置教程
2025-05-21 03:36:41作者:宣海椒Queenly
1. 项目目录结构及介绍
BSP-NET PyTorch 项目目录结构如下:
BSP-NET-pytorch/
├── checkpoint/ # 存储训练好的模型权重
├── data/ # 存储数据集
├── img/ # 存储图像数据
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── bspt.pyx # Cython 实现的 BSP 树恢复模块
├── bspt_slow.py # Python 实现的慢速 BSP 树恢复模块(用于调试)
├── main.py # 项目的主程序
├── modelAE.py # 自编码器模型定义
├── modelSVR.py # SVR 模型定义
├── setup.py # Cython 模块编译脚本
├── test_ae.sh # 测试自编码器的脚本
├── test_svr.sh # 测试 SVR 的脚本
├── train_ae.sh # 训练自编码器的脚本
├── train_svr.sh # 训练 SVR 的脚本
└── utils.py # 通用工具模块
checkpoint/:此目录用于存放训练过程中保存的模型权重文件。data/:存放项目所需的数据集文件。img/:存储项目使用的图像数据。LICENSE:项目的开源许可证文件,本项目采用 MIT 许可证。README.md:项目的说明文档,介绍了项目的详细信息。bspt.pyx和bspt_slow.py:分别是用 Cython 和 Python 实现的 BSP 树恢复模块,后者速度较慢,但易于调试。main.py:项目的主程序文件,包含了模型的训练和测试逻辑。modelAE.py和modelSVR.py:定义了自编码器模型和 SVR 模型的结构和实现。setup.py:用于编译 Cython 模块的脚本。test_ae.sh和test_svr.sh:分别是用于测试自编码器和 SVR 模型的 shell 脚本。train_ae.sh和train_svr.sh:分别是用于训练自编码器和 SVR 模型的 shell 脚本。utils.py:提供了一些项目通用的工具函数。
2. 项目的启动文件介绍
项目的启动主要是通过 main.py 文件来实现的。该文件包含了模型的训练和测试的主要逻辑。以下是一个简单的启动示例:
# 训练自编码器模型
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
该命令将开始训练自编码器模型,使用 --ae 参数指定模型类型,--train 参数指定训练模式,--phase 0 指定训练阶段,--iteration 8000000 指定迭代次数,--sample_dir 指定数据集目录,--sample_vox_size 指定体素大小。
3. 项目的配置文件介绍
本项目使用 Python 的命令行参数来配置训练和测试的选项。在 main.py 文件中,可以使用 flags 来定义和解析命令行参数。以下是一个配置参数的示例:
import flags
FLAGS = flags.FLAGS
# 定义命令行参数
FLAGS.DEFINE_string('sample_dir', '', '样本目录')
FLAGS.DEFINE_integer('sample_vox_size', 32, '体素大小')
FLAGS.DEFINE_integer('iteration', 8000000, '迭代次数')
FLAGS.DEFINE_string('phase', '0', '训练阶段')
在运行训练或测试脚本时,可以通过命令行传递这些参数来配置项目。例如:
python main.py --ae --train --phase 0 --iteration 8000000 --sample_dir samples/all_vox256_img0_16 --sample_vox_size 16
这样,用户可以通过命令行灵活地配置和启动项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100