PatchTST项目中数据逆归一化问题的技术解析
2025-07-06 01:07:00作者:邓越浪Henry
背景概述
在时间序列预测任务中,数据预处理是至关重要的一环。PatchTST作为一个基于Transformer架构的时间序列预测模型,在数据处理流程中采用了标准化(normalization)操作,这在实际应用中会引发一个关键问题:预测结果是否需要逆归一化(inverse_transform)处理?
标准化与逆标准化的必要性
在机器学习任务中,对输入数据进行标准化处理是常见做法,这有助于模型训练的稳定性和收敛速度。PatchTST项目在数据预处理阶段同样采用了这一方法,通过减去均值并除以标准差的方式将数据转换到相似的尺度范围。
然而,当模型完成预测后,理论上应该将输出数据转换回原始尺度,这样才能得到有实际意义的预测值。这种逆变换过程对于以下方面尤为重要:
- 结果解释性:还原到原始数据尺度便于业务理解
- 指标计算:确保评估指标反映真实误差水平
- 后续应用:与其他系统对接时需要原始量纲的数据
项目中的实现现状
通过分析PatchTST的代码实现,特别是PatchTST_supervised/exp/exp_main.py文件,我们发现项目当前存在以下特点:
- 默认情况下不执行逆归一化操作
- 评估指标是基于归一化后的数据计算的
- 这种设计可能导致评估指标看起来"更优",因为归一化后的误差值相对较小
技术实现建议
对于需要实现逆归一化的用户,可以采用以下技术方案:
if test_data.scale and self.args.inverse:
shape = outputs.shape
outputs = test_data.inverse_transform(outputs.squeeze(0)).reshape(shape)
这段代码的逻辑是:
- 检查数据是否经过标准化处理(test_data.scale)
- 检查用户是否明确要求逆变换(self.args.inverse)
- 保持原始输出形状不变的情况下执行逆变换
工程实践考量
在实际应用中是否使用逆归一化需要权衡以下因素:
- 评估一致性:如果目标是与其他研究进行横向比较,可能需要遵循领域惯例
- 业务需求:实际部署时通常需要原始尺度的预测值
- 误差分析:归一化后的误差指标可能掩盖某些实际应用中的问题
最佳实践建议
对于不同场景的建议:
- 学术研究:保持现有模式以确保结果可比性
- 工业应用:添加逆归一化层以获得实际可用的预测值
- 模型调试:可以同时记录两种尺度的结果进行对比分析
理解这一技术细节有助于开发者更好地使用PatchTST项目,并根据实际需求进行适当的代码调整,从而获得更符合预期的预测结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178