PatchTST项目中数据逆归一化问题的技术解析
2025-07-06 01:07:00作者:邓越浪Henry
背景概述
在时间序列预测任务中,数据预处理是至关重要的一环。PatchTST作为一个基于Transformer架构的时间序列预测模型,在数据处理流程中采用了标准化(normalization)操作,这在实际应用中会引发一个关键问题:预测结果是否需要逆归一化(inverse_transform)处理?
标准化与逆标准化的必要性
在机器学习任务中,对输入数据进行标准化处理是常见做法,这有助于模型训练的稳定性和收敛速度。PatchTST项目在数据预处理阶段同样采用了这一方法,通过减去均值并除以标准差的方式将数据转换到相似的尺度范围。
然而,当模型完成预测后,理论上应该将输出数据转换回原始尺度,这样才能得到有实际意义的预测值。这种逆变换过程对于以下方面尤为重要:
- 结果解释性:还原到原始数据尺度便于业务理解
- 指标计算:确保评估指标反映真实误差水平
- 后续应用:与其他系统对接时需要原始量纲的数据
项目中的实现现状
通过分析PatchTST的代码实现,特别是PatchTST_supervised/exp/exp_main.py文件,我们发现项目当前存在以下特点:
- 默认情况下不执行逆归一化操作
- 评估指标是基于归一化后的数据计算的
- 这种设计可能导致评估指标看起来"更优",因为归一化后的误差值相对较小
技术实现建议
对于需要实现逆归一化的用户,可以采用以下技术方案:
if test_data.scale and self.args.inverse:
shape = outputs.shape
outputs = test_data.inverse_transform(outputs.squeeze(0)).reshape(shape)
这段代码的逻辑是:
- 检查数据是否经过标准化处理(test_data.scale)
- 检查用户是否明确要求逆变换(self.args.inverse)
- 保持原始输出形状不变的情况下执行逆变换
工程实践考量
在实际应用中是否使用逆归一化需要权衡以下因素:
- 评估一致性:如果目标是与其他研究进行横向比较,可能需要遵循领域惯例
- 业务需求:实际部署时通常需要原始尺度的预测值
- 误差分析:归一化后的误差指标可能掩盖某些实际应用中的问题
最佳实践建议
对于不同场景的建议:
- 学术研究:保持现有模式以确保结果可比性
- 工业应用:添加逆归一化层以获得实际可用的预测值
- 模型调试:可以同时记录两种尺度的结果进行对比分析
理解这一技术细节有助于开发者更好地使用PatchTST项目,并根据实际需求进行适当的代码调整,从而获得更符合预期的预测结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705