【亲测免费】 xeus-cling 使用教程
2026-01-19 11:15:17作者:胡唯隽
项目介绍
xeus-cling 是一个基于 C++ 解释器 cling 和 Jupyter 协议的本地实现 xeus 的 Jupyter 内核。它允许用户在 Jupyter 笔记本中运行 C++ 代码,为 C++ 开发者提供了一个交互式的编程环境。xeus-cling 支持多种平台,包括 Linux 和 OS X,目前不支持 Windows 平台。
项目快速启动
安装
为了确保安装顺利,建议在一个全新的环境中安装 xeus-cling。可以使用 mamba 或 conda 进行安装:
mamba create -n xeus-cling
source activate xeus-cling
mamba install xeus-cling -c conda-forge
启动 Jupyter Notebook
安装完成后,启动 Jupyter Notebook 并选择 xeus-cling 内核:
jupyter notebook
在 Jupyter Notebook 界面中,新建一个笔记本并选择 xeus-cling 内核。
运行示例代码
在代码单元格中输入以下 C++ 代码并运行:
#include <iostream>
int main() {
std::cout << "Hello, xeus-cling!" << std::endl;
return 0;
}
应用案例和最佳实践
案例一:数据分析
xeus-cling 可以与各种 C++ 库结合使用,进行数据分析。例如,使用 xtensor 进行数组操作:
#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>
int main() {
xt::xarray<double> arr1
{{1.0, 2.0, 3.0},
{2.0, 5.0, 7.0},
{2.0, 5.0, 7.0}};
xt::xarray<double> arr2
{5.0, 6.0, 7.0};
xt::xarray<double> res = xt::view(arr1, 1) + arr2;
std::cout << res << std::endl;
return 0;
}
案例二:机器学习
结合 mlpack 库进行机器学习任务:
#include <mlpack/core.hpp>
#include <mlpack/methods/logistic_regression/logistic_regression.hpp>
int main() {
arma::mat data;
data.load("data.csv", arma::csv_ascii);
arma::Row<size_t> labels;
labels = data.row(data.n_rows - 1);
data.shed_row(data.n_rows - 1);
mlpack::regression::LogisticRegression<> lr(data, labels);
arma::rowvec predictions;
lr.Predict(data, predictions);
std::cout << "Predictions: " << predictions << std::endl;
return 0;
}
典型生态项目
xtensor
xtensor 是一个用于 C++ 的 N 维数组表达式库,支持惰性计算和广播操作。它是 xeus-cling 生态中的重要组成部分,适用于科学计算和数据分析。
mlpack
mlpack 是一个快速、灵活的机器学习库,提供大量的机器学习算法。结合 xeus-cling,可以在 Jupyter 笔记本中进行交互式的机器学习实验。
cppzmq
cppzmq 是 ZeroMQ 的 C++ 绑定库,用于构建高性能的分布式系统。xeus-cling 可以与 cppzmq 结合,进行分布式计算和消息传递。
通过这些生态项目的结合,xeus-cling 为 C++ 开发者提供了一个强大的交互式开发环境,适用于各种复杂的计算任务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882