FreeTensor:面向不规则张量程序的语言与编译器技术解析
2025-06-10 04:52:07作者:虞亚竹Luna
项目概述
FreeTensor是一个专门为不规则张量计算设计的编程语言和编译器系统。它允许开发者使用Python语法编写张量运算程序,然后将其编译为高性能的本地代码(包括CPU和GPU代码)。与传统的深度学习框架不同,FreeTensor特别关注"不规则"张量操作,这类操作在科学计算、图神经网络等场景中十分常见。
核心特性详解
1. 基础张量运算
FreeTensor中最基础的操作就是张量的定义和计算。以下是一个简单的向量加法示例:
import freetensor as ft
import numpy as np
@ft.optimize
def vector_add(a: ft.Var[(4,), "int32"], b: ft.Var[(4,), "int32"]):
y = ft.empty((4,), "int32") # 分配输出张量
for i in range(4): # 显式循环
y[i] = a[i] + b[i] # 逐元素相加
return y
这个例子展示了FreeTensor的几个关键特点:
- 使用Python语法但具有强类型声明
- 支持显式的循环结构
- 自动编译优化为高效本地代码
2. 动态形状支持
在实际应用中,张量大小经常是运行时确定的。FreeTensor通过将形状参数化的方式支持这一需求:
@ft.optimize
def dynamic_vector_add(n: ft.Var[(), "int32"], a, b):
a: ft.Var[(n,), "int32"] # 运行时确定长度的向量
b: ft.Var[(n,), "int32"]
y = ft.empty((n,), "int32")
for i in range(n): # 动态循环边界
y[i] = a[i] + b[i]
return y
这种设计既保持了灵活性,又尽可能不牺牲性能。需要注意的是,完全动态的形状可能会限制某些优化机会。
3. GPU加速支持
FreeTensor的一个强大特性是能够将计算无缝迁移到GPU上执行:
with ft.GPU(0): # 指定使用GPU设备
@ft.optimize(
schedule_callback=lambda s: s.parallelize("Li", "threadIdx.x"))
def gpu_vector_add(n: ft.Var[(), "int32", "input", "byvalue"], a, b):
a: ft.Var[(n,), "int32"]
b: ft.Var[(n,), "int32"]
y = ft.empty((n,), "int32")
#! label: Li # 标记循环用于并行化
for i in range(n):
y[i] = a[i] + b[i]
return y
关键概念说明:
parallelize调度指令将循环映射到GPU线程- 内存属性标记(
byvalue等)确保数据正确传输 - 显式的并行化控制提供了优化灵活性
4. 高级运算符支持
为了方便使用,FreeTensor内置了大量常用张量运算:
@ft.optimize
def optimized_vector_add(n: ft.Var[(), "int32"], a, b):
a: ft.Var[(n,), "int32"]
b: ft.Var[(n,), "int32"]
return a + b # 使用重载运算符或ft.add函数
这些内置运算符不仅简化了代码,还能参与整体优化过程,通常会生成比手动实现更高效的代码。
5. 自动微分能力
FreeTensor支持反向模式自动微分,这对机器学习应用至关重要:
def dot_product(a: ft.Var[(4,), "float32"], b: ft.Var[(4,), "float32"]):
y = ft.zeros((), "float32")
for i in range(4):
y[()] += a[i] * b[i] # 点积运算
return y
# 自动生成前向和反向计算图
fwd, bwd, input_grads, output_grads = ft.grad(dot_product, ['a', 'b'], [ft.Return()])
自动微分系统会分析计算图,生成计算梯度所需的反向传播代码,整个过程对用户透明。
技术优势分析
FreeTensor在以下几个方面表现出色:
- 灵活性与性能平衡:既支持高级抽象,又能进行底层优化
- 显式控制:允许开发者精细控制并行策略和内存布局
- 跨平台支持:同一份代码可编译为CPU或GPU目标
- 可扩展性:通过调度系统支持自定义优化策略
典型应用场景
FreeTensor特别适合以下领域:
- 科学计算中的不规则网格计算
- 图神经网络中的稀疏操作
- 需要自定义计算内核的机器学习模型
- 高性能计算中的张量运算
总结
FreeTensor为不规则张量计算提供了一个强大而灵活的工具链。通过Python接口与底层优化的结合,它既保持了开发效率,又不牺牲运行时性能。对于需要自定义高性能计算内核的开发者来说,FreeTensor是一个值得关注的选择。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896