profanity-check 项目教程
1. 项目介绍
profanity-check 是一个快速且健壮的 Python 库,用于检测字符串中的亵渎或冒犯性语言。该项目使用线性 SVM 模型,该模型在 20 万个人工标注的样本上进行训练,能够有效地识别和过滤文本中的不当内容。profanity-check 的设计目标是提供高性能和准确性,同时避免使用硬编码的黑名单词汇列表,从而提高检测的鲁棒性。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后使用 pip 安装 profanity-check:
pip install profanity-check
基本使用
安装完成后,你可以使用以下代码来检测文本中的亵渎语言:
from profanity_check import predict, predict_prob
# 检测单个字符串
result = predict(['这是一个干净的句子。'])
print(result) # 输出: [0]
result = predict(['这是一个包含亵渎语言的句子。'])
print(result) # 输出: [1]
# 获取概率
probabilities = predict_prob(['这是一个包含亵渎语言的句子。'])
print(probabilities) # 输出: [0.7618861]
批量检测
你也可以批量检测多个字符串:
texts = [
'这是一个干净的句子。',
'这是一个包含亵渎语言的句子。',
'另一个干净的句子。'
]
results = predict(texts)
print(results) # 输出: [0, 1, 0]
3. 应用案例和最佳实践
应用案例
-
社交媒体内容过滤:在社交媒体平台上,可以使用
profanity-check来过滤用户发布的不当内容,确保平台环境的友好和安全。 -
评论系统:在网站的评论系统中,可以使用该库来检测和过滤用户评论中的不当语言,提升用户体验。
-
内容审核:在内容审核系统中,
profanity-check可以作为一个快速过滤器,帮助审核人员快速识别和处理不当内容。
最佳实践
-
模型更新:虽然
profanity-check的模型已经非常有效,但随着时间的推移,语言的使用习惯可能会发生变化。建议定期更新模型或重新训练模型以保持检测的准确性。 -
结合其他工具:可以结合其他自然语言处理工具(如情感分析、关键词提取等)来进一步提升内容过滤的效果。
4. 典型生态项目
alt-profanity-check
alt-profanity-check 是 profanity-check 的一个替代版本,旨在解决原项目维护不足的问题。它遵循 scikit-learn 的版本,并定期更新模型,以确保与最新版本的依赖库兼容。
Readable 的 Profanity Detector
Readable 提供了一个在线的亵渎语言检测工具,可以快速检测文本中的不当内容,并提供可视化的结果。该工具适用于需要快速检测大量文本的场景。
通过这些生态项目,你可以进一步扩展 profanity-check 的功能,满足不同场景下的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00