profanity-check 项目教程
2024-09-14 20:58:04作者:薛曦旖Francesca
1. 项目目录结构及介绍
profanity-check/
├── data/
│ ├── __init__.py
│ ├── __pycache__/
│ ├── model.joblib
│ └── vectorizer.joblib
├── profanity_check/
│ ├── __init__.py
│ ├── __pycache__/
│ ├── predict.py
│ └── predict_prob.py
├── tests/
│ ├── __init__.py
│ ├── __pycache__/
│ └── test_profanity_check.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── train_model.py
目录结构介绍
- data/: 包含训练好的模型文件
model.joblib
和向量化器文件vectorizer.joblib
。 - profanity_check/: 核心代码目录,包含预测函数
predict.py
和预测概率函数predict_prob.py
。 - tests/: 测试代码目录,包含测试文件
test_profanity_check.py
。 - .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装配置文件。
- train_model.py: 模型训练脚本。
2. 项目的启动文件介绍
项目的启动文件主要是 profanity_check/predict.py
和 profanity_check/predict_prob.py
。
predict.py
该文件包含 predict
函数,用于判断输入的字符串是否包含不当内容。函数返回一个数组,其中每个元素为 1 表示字符串包含不当内容,为 0 表示不包含。
from profanity_check import predict
# 示例
result = predict(['这是一个测试', '这是一个不当内容'])
print(result) # 输出: [0, 1]
predict_prob.py
该文件包含 predict_prob
函数,用于返回输入字符串包含不当内容的概率。函数返回一个数组,其中每个元素为概率值。
from profanity_check import predict_prob
# 示例
result = predict_prob(['这是一个测试', '这是一个不当内容'])
print(result) # 输出: [0.01, 0.95]
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的 Python 依赖包。
scikit-learn==0.24.2
numpy==1.21.0
joblib==1.0.1
setup.py
该文件用于配置项目的安装信息,包括项目的名称、版本、作者、依赖等。
from setuptools import setup, find_packages
setup(
name='profanity-check',
version='1.0.3',
author='Victor Zhou',
description='A fast, robust library to check for offensive language in strings.',
packages=find_packages(),
install_requires=[
'scikit-learn==0.24.2',
'numpy==1.21.0',
'joblib==1.0.1'
],
)
通过以上配置,用户可以使用 pip install .
命令安装项目。
以上是 profanity-check
项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0