profanity-check 项目教程
2024-09-14 04:44:52作者:薛曦旖Francesca
1. 项目目录结构及介绍
profanity-check/
├── data/
│ ├── __init__.py
│ ├── __pycache__/
│ ├── model.joblib
│ └── vectorizer.joblib
├── profanity_check/
│ ├── __init__.py
│ ├── __pycache__/
│ ├── predict.py
│ └── predict_prob.py
├── tests/
│ ├── __init__.py
│ ├── __pycache__/
│ └── test_profanity_check.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── train_model.py
目录结构介绍
- data/: 包含训练好的模型文件
model.joblib
和向量化器文件vectorizer.joblib
。 - profanity_check/: 核心代码目录,包含预测函数
predict.py
和预测概率函数predict_prob.py
。 - tests/: 测试代码目录,包含测试文件
test_profanity_check.py
。 - .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装配置文件。
- train_model.py: 模型训练脚本。
2. 项目的启动文件介绍
项目的启动文件主要是 profanity_check/predict.py
和 profanity_check/predict_prob.py
。
predict.py
该文件包含 predict
函数,用于判断输入的字符串是否包含不当内容。函数返回一个数组,其中每个元素为 1 表示字符串包含不当内容,为 0 表示不包含。
from profanity_check import predict
# 示例
result = predict(['这是一个测试', '这是一个不当内容'])
print(result) # 输出: [0, 1]
predict_prob.py
该文件包含 predict_prob
函数,用于返回输入字符串包含不当内容的概率。函数返回一个数组,其中每个元素为概率值。
from profanity_check import predict_prob
# 示例
result = predict_prob(['这是一个测试', '这是一个不当内容'])
print(result) # 输出: [0.01, 0.95]
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的 Python 依赖包。
scikit-learn==0.24.2
numpy==1.21.0
joblib==1.0.1
setup.py
该文件用于配置项目的安装信息,包括项目的名称、版本、作者、依赖等。
from setuptools import setup, find_packages
setup(
name='profanity-check',
version='1.0.3',
author='Victor Zhou',
description='A fast, robust library to check for offensive language in strings.',
packages=find_packages(),
install_requires=[
'scikit-learn==0.24.2',
'numpy==1.21.0',
'joblib==1.0.1'
],
)
通过以上配置,用户可以使用 pip install .
命令安装项目。
以上是 profanity-check
项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5