Stable Baselines3中实现仅保留最近K个检查点的技术方案
2025-05-22 22:05:37作者:沈韬淼Beryl
背景介绍
在使用Stable Baselines3进行强化学习模型训练时,CheckpointCallback是一个常用的回调函数,它能够定期保存训练过程中的模型检查点。然而,随着训练时间的增长,这些检查点会不断累积,占用大量存储空间。许多情况下,我们只需要保留最近的几个检查点即可。
现有问题分析
Stable Baselines3内置的CheckpointCallback目前不支持自动删除旧检查点的功能。这意味着:
- 长期训练会产生大量检查点文件
- 手动删除旧检查点既麻烦又容易出错
- 存储空间可能被不必要的旧检查点占满
解决方案实现
我们可以通过自定义回调函数来实现仅保留最近K个检查点的功能。以下是实现这一功能的技术细节:
核心思路
- 使用最小堆(Min-Heap)数据结构来管理检查点
- 每次保存新检查点时将其加入堆
- 当堆大小超过K时,弹出并删除最早的检查点
代码实现
from heapq import heappop, heappush
class KeepLastKCheckpoints(BaseCallback):
def __init__(self, k: int, save_freq: int, save_path: str, name_prefix: str = "rl_model", verbose: int = 0):
super().__init__(verbose)
self.k = k
self.save_freq = save_freq
self.save_path = save_path
self.name_prefix = name_prefix
# 使用最小堆存储检查点,按时间步排序
self._ckpt_heap = []
def _checkpoint_path(self, checkpoint_type: str = "", extension: str = "") -> str:
# 生成检查点路径
return os.path.join(self.save_path, f"{self.name_prefix}_{checkpoint_type}{self.num_timesteps}_steps.{extension}")
def _on_step(self) -> bool:
# 跟踪CheckpointCallback的触发
if self.n_calls % self.save_freq == 0:
heappush(self._ckpt_heap, (self.num_timesteps, self._checkpoint_path(extension="zip")))
if len(self._ckpt_heap) > self.k:
_, ckpt_name = heappop(self._ckpt_heap)
os.remove(ckpt_name)
return super()._on_step()
实现要点
- 堆数据结构选择:使用最小堆可以高效地获取最早的检查点
- 路径生成:复用CheckpointCallback的路径生成逻辑
- 同步问题:需要确保该回调在CheckpointCallback之后执行
使用建议
- 将此回调添加到回调列表中时,确保它位于CheckpointCallback之后
- 根据实际需求调整K值,平衡存储空间和检查点保留需求
- 对于长时间训练,建议设置合理的K值(如5-10)
潜在改进方向
虽然当前实现可以满足基本需求,但仍有改进空间:
- 与CheckpointCallback集成:可以考虑将这一功能直接整合到CheckpointCallback中
- 更灵活的删除策略:不仅基于数量,还可以考虑基于时间或性能指标
- 错误处理:增加对文件删除失败的处理逻辑
总结
通过自定义回调函数实现仅保留最近K个检查点的功能,可以有效解决长期训练中检查点累积的问题。这种方案实现简单,对现有代码侵入性小,是当前Stable Baselines3框架下较为理想的解决方案。未来如果社区需求增加,可以考虑将其作为标准功能集成到CheckpointCallback中。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K