Stable Baselines3中实现仅保留最近K个检查点的技术方案
2025-05-22 23:27:17作者:沈韬淼Beryl
背景介绍
在使用Stable Baselines3进行强化学习模型训练时,CheckpointCallback是一个常用的回调函数,它能够定期保存训练过程中的模型检查点。然而,随着训练时间的增长,这些检查点会不断累积,占用大量存储空间。许多情况下,我们只需要保留最近的几个检查点即可。
现有问题分析
Stable Baselines3内置的CheckpointCallback目前不支持自动删除旧检查点的功能。这意味着:
- 长期训练会产生大量检查点文件
- 手动删除旧检查点既麻烦又容易出错
- 存储空间可能被不必要的旧检查点占满
解决方案实现
我们可以通过自定义回调函数来实现仅保留最近K个检查点的功能。以下是实现这一功能的技术细节:
核心思路
- 使用最小堆(Min-Heap)数据结构来管理检查点
- 每次保存新检查点时将其加入堆
- 当堆大小超过K时,弹出并删除最早的检查点
代码实现
from heapq import heappop, heappush
class KeepLastKCheckpoints(BaseCallback):
def __init__(self, k: int, save_freq: int, save_path: str, name_prefix: str = "rl_model", verbose: int = 0):
super().__init__(verbose)
self.k = k
self.save_freq = save_freq
self.save_path = save_path
self.name_prefix = name_prefix
# 使用最小堆存储检查点,按时间步排序
self._ckpt_heap = []
def _checkpoint_path(self, checkpoint_type: str = "", extension: str = "") -> str:
# 生成检查点路径
return os.path.join(self.save_path, f"{self.name_prefix}_{checkpoint_type}{self.num_timesteps}_steps.{extension}")
def _on_step(self) -> bool:
# 跟踪CheckpointCallback的触发
if self.n_calls % self.save_freq == 0:
heappush(self._ckpt_heap, (self.num_timesteps, self._checkpoint_path(extension="zip")))
if len(self._ckpt_heap) > self.k:
_, ckpt_name = heappop(self._ckpt_heap)
os.remove(ckpt_name)
return super()._on_step()
实现要点
- 堆数据结构选择:使用最小堆可以高效地获取最早的检查点
- 路径生成:复用CheckpointCallback的路径生成逻辑
- 同步问题:需要确保该回调在CheckpointCallback之后执行
使用建议
- 将此回调添加到回调列表中时,确保它位于CheckpointCallback之后
- 根据实际需求调整K值,平衡存储空间和检查点保留需求
- 对于长时间训练,建议设置合理的K值(如5-10)
潜在改进方向
虽然当前实现可以满足基本需求,但仍有改进空间:
- 与CheckpointCallback集成:可以考虑将这一功能直接整合到CheckpointCallback中
- 更灵活的删除策略:不仅基于数量,还可以考虑基于时间或性能指标
- 错误处理:增加对文件删除失败的处理逻辑
总结
通过自定义回调函数实现仅保留最近K个检查点的功能,可以有效解决长期训练中检查点累积的问题。这种方案实现简单,对现有代码侵入性小,是当前Stable Baselines3框架下较为理想的解决方案。未来如果社区需求增加,可以考虑将其作为标准功能集成到CheckpointCallback中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1