Qiling框架中的AFL++模糊测试机制解析
2025-06-07 19:32:14作者:农烁颖Land
Qiling框架作为一个先进的全系统模拟平台,其与AFL++结合的模糊测试功能为二进制分析提供了强大工具。本文将深入剖析Qiling框架中基于AFL++的模糊测试工作原理,帮助安全研究人员更好地理解其内部机制。
模糊测试流程概述
Qiling的模糊测试过程采用了两阶段工作模式,这种设计既保证了测试效率又确保了系统状态的稳定性。
状态快照生成阶段
在模糊测试开始前,Qiling会执行一个特殊的"保存器"脚本。这个脚本的主要任务是:
- 将目标程序运行至目标函数即将被调用的临界状态
- 完整捕获此刻的系统状态,包括:
- 所有寄存器值
- 内存内容
- 堆栈状态
- 将这些状态序列化存储到snapshot.bin文件中
模糊测试执行阶段
当实际进行模糊测试时,Qiling会:
- 从快照文件中恢复完整的系统状态
- 调用目标函数并注入模糊测试输入
- 记录执行结果和代码覆盖率
- 重复上述过程,每次测试都从干净的快照状态开始
关键技术实现细节
状态恢复机制
Qiling采用全状态恢复而非部分重置的方式,这确保了:
- 每次测试都在完全相同的初始环境下进行
- 避免了测试间的状态干扰
- 保证了测试结果的可重复性
内存管理策略
在模糊测试过程中,Qiling会:
- 为每次测试重新加载内存快照
- 确保堆对象不会在测试间残留
- 维持内存布局的一致性
寄存器初始化
目标函数被调用时,Qiling会:
- 从快照中恢复所有寄存器值
- 确保调用约定得到遵守
- 为模糊测试输入设置正确的参数寄存器
性能优化考量
这种快照恢复机制虽然增加了初始开销,但带来了显著的长期优势:
- 避免了每次重新加载整个程序的成本
- 减少了测试间的状态清理开销
- 提高了测试用例的执行速度
实际应用建议
对于安全研究人员,在使用Qiling进行模糊测试时应注意:
- 确保目标函数的选择合理,避免过于复杂的函数
- 监控快照文件的大小,过大的快照可能影响性能
- 合理设置模糊测试的超时参数
- 定期检查覆盖率反馈以优化测试策略
通过深入理解Qiling的模糊测试机制,研究人员可以更有效地利用这一强大工具进行二进制分析和研究工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134