AFL++中QEMU持久化模式与libcompcov的兼容性问题分析
2025-06-06 15:11:59作者:袁立春Spencer
概述
在AFL++模糊测试框架中,QEMU模式的持久化特性与libcompcov插桩库的配合使用存在一些技术挑战。本文将深入分析这一问题的本质,并探讨可能的解决方案。
问题背景
当使用AFL++对包含无限循环的服务程序进行模糊测试时,开发者通常会采用QEMU持久化模式来仅测试请求处理部分。同时,为了处理程序中存在的魔数比较(magic byte comparisons),libcompcov库是一个非常有用的工具。
然而,当尝试同时使用这两个特性时,会出现覆盖率收集失效的问题,表现为模糊测试器无法发现新的执行路径。
技术分析
持久化模式的工作原理
QEMU持久化模式通过以下机制实现:
- 在指定地址创建快照
- 每次模糊测试迭代后恢复到该快照状态
- 保持寄存器状态不变(AFL_QEMU_PERSISTENT_GPR=1)
- 控制退出点(AFL_QEMU_PERSISTENT_EXITS=1)
libcompcov的工作机制
libcompcov是一个运行时库,它通过以下方式增强模糊测试:
- 在目标程序运行时加载
- 监控特定的比较指令
- 记录比较操作的操作数
- 通过共享内存与模糊测试器通信
冲突根源
当两者结合使用时,问题出现在内存快照的保存和恢复过程中。持久化模式会保存和恢复/proc/self/maps中的部分内存区域,其中恰好包含了libcompcov和QEMU用于记录覆盖率的共享内存段。这导致:
- 覆盖率数据在每次迭代后被重置
- 模糊测试器无法获取有效的路径信息
- 表现为"last new find : none yet"的异常状态
现有解决方案
目前可用的临时解决方案包括:
- 分离使用策略:在主节点使用AFL_ENTRYPOINT和fork模式配合libcompcov,在其他节点使用快照模式
- 环境变量组合:使用AFL_QEMU_PERSISTENT_ADDR、AFL_QEMU_PERSISTENT_GPR和AFL_QEMU_PERSISTENT_EXITS,但不使用AFL_QEMU_PERSISTENT_MEM
未来改进方向
- 实现AFL_EXITPOINT特性:允许指定退出地址,完美解决无限循环问题
- 修改QEMU-AFL的内存快照机制:避免保存和恢复共享内存区域
- 增强libcompcov的持久化兼容性:使其能够感知持久化模式并相应调整行为
最佳实践建议
对于遇到类似问题的开发者,建议:
- 首先评估是否真的需要同时使用这两个特性
- 考虑使用基于覆盖率的模糊测试调度策略
- 对于关键比较操作,可以尝试人工编写字典
- 关注AFL++的更新,等待官方解决方案的发布
通过深入理解这些技术细节,开发者可以更好地利用AFL++的强大功能,同时规避潜在的兼容性问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210