Imbalance-XGBoost 使用教程
2024-08-18 23:31:56作者:余洋婵Anita
项目介绍
Imbalance-XGBoost 是一个结合了 XGBoost 软件与加权和焦点损失的 Python 包,旨在解决二分类标签不平衡问题。该项目通过自定义损失函数,计算一阶和二阶导数,提供了一种便捷的方式来定制损失函数,从而有效地处理类别不平衡的数据集。
项目快速启动
安装
首先,通过 pip 安装 Imbalance-XGBoost:
pip install imbalance-xgboost
示例代码
以下是一个简单的示例,展示如何使用 Imbalance-XGBoost 进行分类:
from imbalance_xgboost import ImbalancedXGBClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 生成不平衡数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, weights=[0.9, 0.1], random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化 ImbalancedXGBClassifier
model = ImbalancedXGBClassifier(use_weighted_loss=True)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
应用案例和最佳实践
案例一:金融欺诈检测
在金融领域,欺诈检测是一个典型的类别不平衡问题。使用 Imbalance-XGBoost 可以有效地识别少数类(欺诈交易),提高模型的召回率。
案例二:医疗诊断
在医疗诊断中,罕见疾病的检测同样面临类别不平衡的挑战。通过调整损失函数,Imbalance-XGBoost 可以帮助医生更准确地识别罕见病例。
最佳实践
- 调整
scale_pos_weight:根据正负样本比例调整scale_pos_weight参数,以平衡类别权重。 - 使用焦点损失:在高度不平衡的数据集中,使用焦点损失可以减少易分类样本的权重,提高模型对难分类样本的关注。
典型生态项目
1. XGBoost
Imbalance-XGBoost 是基于 XGBoost 开发的,XGBoost 是一个高效、灵活且可扩展的梯度提升库,广泛应用于各种机器学习任务。
2. Scikit-learn
Imbalance-XGBoost 与 Scikit-learn 兼容,可以无缝集成到 Scikit-learn 的生态系统中,使用其丰富的数据预处理和模型评估工具。
3. Pandas
在数据处理阶段,Pandas 提供了强大的数据分析和操作功能,与 Imbalance-XGBoost 结合使用,可以更高效地处理和分析数据。
通过以上模块的介绍和示例,您可以快速上手并深入了解 Imbalance-XGBoost 的使用和应用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111