MLServer 使用教程
1. 项目介绍
MLServer 是一个开源的 Python 库,旨在为机器学习模型构建生产就绪的异步 API。它支持多种机器学习框架,如 Scikit-Learn、XGBoost、LightGBM 等,并且完全兼容 KFServing 的 V2 数据平面规范。MLServer 提供了多模型服务、自适应批处理、Kubernetes 原生部署等功能,使得用户可以轻松地将机器学习模型部署到生产环境中。
2. 项目快速启动
安装 MLServer
首先,通过 pip 安装 MLServer:
pip install mlserver
启动 MLServer
创建一个简单的模型配置文件 model-settings.json:
{
"name": "my-model",
"implementation": "mlserver_sklearn.SKLearnModel"
}
启动 MLServer:
mlserver start .
测试服务
使用 curl 命令测试服务:
curl -X POST http://localhost:8080/v2/models/my-model/infer -d '{
"inputs": [
{
"name": "input-0",
"shape": [2, 2],
"datatype": "FP32",
"data": [1.0, 2.0, 3.0, 4.0]
}
]
}'
3. 应用案例和最佳实践
案例1:使用 Scikit-Learn 模型
-
安装 Scikit-Learn 支持:
pip install mlserver-sklearn -
创建模型配置文件
model-settings.json:{ "name": "sklearn-model", "implementation": "mlserver_sklearn.SKLearnModel" } -
启动 MLServer:
mlserver start .
案例2:使用 XGBoost 模型
-
安装 XGBoost 支持:
pip install mlserver-xgboost -
创建模型配置文件
model-settings.json:{ "name": "xgboost-model", "implementation": "mlserver_xgboost.XGBoostModel" } -
启动 MLServer:
mlserver start .
4. 典型生态项目
Seldon Core
Seldon Core 是一个开源的机器学习模型部署平台,支持在 Kubernetes 上部署和管理机器学习模型。MLServer 可以与 Seldon Core 集成,提供高性能的模型服务。
KServe
KServe(原 KFServing)是一个 Kubernetes 原生的模型服务框架,支持多种机器学习框架。MLServer 完全兼容 KServe 的 V2 数据平面规范,可以直接在 KServe 中使用。
Alibi Explain
Alibi Explain 是一个开源的模型解释工具,支持多种解释方法。MLServer 可以与 Alibi Explain 集成,提供模型解释服务。
Alibi Detect
Alibi Detect 是一个开源的异常检测工具,支持多种异常检测方法。MLServer 可以与 Alibi Detect 集成,提供异常检测服务。
通过这些生态项目的集成,MLServer 可以为用户提供更加全面和强大的机器学习模型服务解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00