探索未来学习的基石:一次尝试的简单零样本学习法
2024-06-01 05:12:49作者:卓炯娓
在这个快速发展的AI时代,我们不断寻找新的方法来提升机器学习的效率和能力。本文将向您推荐一个Python实现的开源项目——基于“An embarrassingly simple approach to zero-shot learning”的实验。这个项目源自于2015年ICML论文,并通过矩阵分解方法展示了如何在无标签数据上进行零样本(zero-shot)或一样本(one-shot)学习。
简单解释:零样本与一样本学习
零样本学习是一种旨在从未被见过的类别中进行预测的技术,它依赖于类别的属性描述。而一样本学习则是利用少量的示例数据来预测新类别。本项目通过矩阵分解的方式,构建了可训练的权重矩阵和签名矩阵,从而使得模型能对未知类别进行有效预测。
技术实现与分析
项目的核心在于矩阵分解,将n*m矩阵分解为n*a和a*m两部分,其中a表示潜在特征的数量。在训练阶段,通过训练得到一个n*m的权重矩阵,用于预测类别。同时,还训练了一个a*m的签名矩阵,该矩阵包含了每个类别的属性信息。
在零样本学习中,当面对新类别时,创建一个新的签名矩阵,然后通过计算得到的新权重矩阵对测试样本进行分类。
而在一样本学习中,项目采用了PCA和LLE等无监督学习方法生成类别的属性,通过对单一或多个样本进行平均处理,生成用于预测的签名矩阵。
应用场景
这个项目非常适合那些拥有大量未标记数据但类别不断变化的情况,如图像识别、自然语言处理等领域。零样本学习可以让模型在没有先验知识的情况下学习新的概念,而一样本学习则可以在有限的样例下快速适应新环境。
项目特点
- 简洁实现:代码结构清晰,易于理解和复用。
- 灵活性高:适用于无标签数据的零样本和至少有单一实例的一样本学习。
- 适用性强:即使在缺少类别属性信息的情况下也能工作。
- 扩展性好:该项目提供了一个基本框架,可以作为进一步研究的起点。
为了更深入地理解这一创新方法,您可以访问项目的GitHub链接,参与到源码的学习与讨论中。让我们共同探索这个令人兴奋的领域,推动机器学习的发展,一起创造更多可能!
这是一个引人入胜的探索之旅,期待您的加入!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660