首页
/ 探索未来学习的基石:一次尝试的简单零样本学习法

探索未来学习的基石:一次尝试的简单零样本学习法

2024-06-01 05:12:49作者:卓炯娓

在这个快速发展的AI时代,我们不断寻找新的方法来提升机器学习的效率和能力。本文将向您推荐一个Python实现的开源项目——基于“An embarrassingly simple approach to zero-shot learning”的实验。这个项目源自于2015年ICML论文,并通过矩阵分解方法展示了如何在无标签数据上进行零样本(zero-shot)或一样本(one-shot)学习。

简单解释:零样本与一样本学习

零样本学习是一种旨在从未被见过的类别中进行预测的技术,它依赖于类别的属性描述。而一样本学习则是利用少量的示例数据来预测新类别。本项目通过矩阵分解的方式,构建了可训练的权重矩阵和签名矩阵,从而使得模型能对未知类别进行有效预测。

技术实现与分析

项目的核心在于矩阵分解,将n*m矩阵分解为n*aa*m两部分,其中a表示潜在特征的数量。在训练阶段,通过训练得到一个n*m的权重矩阵,用于预测类别。同时,还训练了一个a*m的签名矩阵,该矩阵包含了每个类别的属性信息。

在零样本学习中,当面对新类别时,创建一个新的签名矩阵,然后通过计算得到的新权重矩阵对测试样本进行分类。

而在一样本学习中,项目采用了PCA和LLE等无监督学习方法生成类别的属性,通过对单一或多个样本进行平均处理,生成用于预测的签名矩阵。

应用场景

这个项目非常适合那些拥有大量未标记数据但类别不断变化的情况,如图像识别、自然语言处理等领域。零样本学习可以让模型在没有先验知识的情况下学习新的概念,而一样本学习则可以在有限的样例下快速适应新环境。

项目特点

  • 简洁实现:代码结构清晰,易于理解和复用。
  • 灵活性高:适用于无标签数据的零样本和至少有单一实例的一样本学习。
  • 适用性强:即使在缺少类别属性信息的情况下也能工作。
  • 扩展性好:该项目提供了一个基本框架,可以作为进一步研究的起点。

为了更深入地理解这一创新方法,您可以访问项目的GitHub链接,参与到源码的学习与讨论中。让我们共同探索这个令人兴奋的领域,推动机器学习的发展,一起创造更多可能!

查看项目GitHub仓库

这是一个引人入胜的探索之旅,期待您的加入!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
263
51
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
62
16
open-eBackupopen-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-jobxxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
8
0
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27