FoundationVision/VAR模型中的损失函数设计与训练过程解析
2025-05-29 10:04:36作者:裴麒琰
摘要
本文深入解析FoundationVision/VAR项目中视频自回归模型(VAR)的损失函数设计原理与训练过程细节。重点探讨了交叉熵损失的分解方法、不可约损失的计算方式以及模型训练过程中的关键指标监控。
交叉熵损失的分解原理
在VAR模型中,标准交叉熵损失(Cross-Entropy Loss)被分解为两个组成部分:
- 不可约损失(E(ground_truth)):表示数据本身固有的不确定性,与模型预测能力无关
- 可约损失(D_KL(ground_truth, prediction)):表示模型预测与真实分布之间的KL散度,可通过优化模型参数来减小
这种分解方法借鉴了NLP领域关于缩放定律(scaling laws)的研究成果,其数学表达式为:
CE(ground_truth, prediction) = E(ground_truth) + D_KL(ground_truth, prediction)
不可约损失的计算方法
项目中通过以下步骤计算E(ground_truth):
- 使用VQVAE模型处理ImageNet数据集中的每张图像
- 获取VQ词汇表中每个词的概率分布
- 基于这些概率分布计算熵值
实验结果表明,在最大规模模型下,不可约损失为4.5,而所有规模模型的平均不可约损失为5.1。
训练过程监控
为了深入理解模型训练动态,项目团队记录了完整的训练日志,包括:
- 原始交叉熵损失值的变化曲线
- 可约损失随训练迭代的变化趋势
- 不同模型规模下的损失收敛情况
这些监控数据对于分析模型的学习动态、评估训练稳定性以及指导超参数调整都具有重要价值。
技术意义与应用价值
这种损失分解方法具有以下优势:
- 更清晰的模型评估:分离了数据固有不确定性和模型可优化的部分
- 更好的训练监控:可约损失直接反映模型的学习进度
- 跨模型可比性:消除了数据本身复杂度带来的影响
对于视频生成任务,这种损失设计方法特别适合评估模型对复杂时空模式的学习能力,为后续模型优化提供了明确的方向。
结论
FoundationVision/VAR项目通过创新的损失函数设计和细致的训练过程监控,为视频自回归建模提供了可靠的技术方案。损失分解方法不仅提升了模型评估的准确性,也为理解模型学习动态提供了新的视角。这些技术细节的公开分享将有助于推动视频生成领域的进一步发展。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210