FoundationVision/VAR模型中的损失函数设计与训练过程解析
2025-05-29 03:19:47作者:裴麒琰
摘要
本文深入解析FoundationVision/VAR项目中视频自回归模型(VAR)的损失函数设计原理与训练过程细节。重点探讨了交叉熵损失的分解方法、不可约损失的计算方式以及模型训练过程中的关键指标监控。
交叉熵损失的分解原理
在VAR模型中,标准交叉熵损失(Cross-Entropy Loss)被分解为两个组成部分:
- 不可约损失(E(ground_truth)):表示数据本身固有的不确定性,与模型预测能力无关
- 可约损失(D_KL(ground_truth, prediction)):表示模型预测与真实分布之间的KL散度,可通过优化模型参数来减小
这种分解方法借鉴了NLP领域关于缩放定律(scaling laws)的研究成果,其数学表达式为:
CE(ground_truth, prediction) = E(ground_truth) + D_KL(ground_truth, prediction)
不可约损失的计算方法
项目中通过以下步骤计算E(ground_truth):
- 使用VQVAE模型处理ImageNet数据集中的每张图像
- 获取VQ词汇表中每个词的概率分布
- 基于这些概率分布计算熵值
实验结果表明,在最大规模模型下,不可约损失为4.5,而所有规模模型的平均不可约损失为5.1。
训练过程监控
为了深入理解模型训练动态,项目团队记录了完整的训练日志,包括:
- 原始交叉熵损失值的变化曲线
- 可约损失随训练迭代的变化趋势
- 不同模型规模下的损失收敛情况
这些监控数据对于分析模型的学习动态、评估训练稳定性以及指导超参数调整都具有重要价值。
技术意义与应用价值
这种损失分解方法具有以下优势:
- 更清晰的模型评估:分离了数据固有不确定性和模型可优化的部分
- 更好的训练监控:可约损失直接反映模型的学习进度
- 跨模型可比性:消除了数据本身复杂度带来的影响
对于视频生成任务,这种损失设计方法特别适合评估模型对复杂时空模式的学习能力,为后续模型优化提供了明确的方向。
结论
FoundationVision/VAR项目通过创新的损失函数设计和细致的训练过程监控,为视频自回归建模提供了可靠的技术方案。损失分解方法不仅提升了模型评估的准确性,也为理解模型学习动态提供了新的视角。这些技术细节的公开分享将有助于推动视频生成领域的进一步发展。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692