Diffrax项目中的CNF示例问题分析与解决方案
Diffrax是一个基于JAX的微分方程求解库,其中包含了连续归一化流(CNF)的示例实现。近期在运行该示例时发现了一些技术问题,本文将详细分析这些问题并提供解决方案。
图像读取警告问题
在运行CNF示例时,系统会抛出关于imageio库的弃用警告。这个警告源于imageio 2.36.1版本对API的调整,预示着未来版本(v3)的行为变更。
警告信息表明,当前使用的imageio.imread函数在v3版本中将改变行为,与新的iio.v3.imread保持一致。为了保持现有行为并消除警告,建议采用以下两种方式之一:
- 显式使用v2命名空间:
import imageio.v2 as imageio - 直接调用v2版本的函数:
imageio.v2.imread
这个问题虽然不影响当前功能,但作为长期维护的代码,建议提前适配以避免未来版本升级时的兼容性问题。
优化器更新错误
更严重的问题出现在模型优化步骤中,系统抛出ValueError: Expected None, got 0.05错误。这个错误的根本原因是JAX对树形结构处理方式的变更。
在旧版JAX中,None值被视为非None值的前缀,但这种行为在新版本中已被修改。错误发生在optax优化器更新模型参数时,模型结构中同时包含可训练参数(浮点数组)和不可训练参数(如整数或其他类型)。
解决方案是明确指定只对可训练参数进行优化更新。Diffrax提供了eqx.filter和eqx.is_inexact_array工具来筛选出需要更新的参数:
updates, opt_state = optim.update(
grads,
opt_state,
eqx.filter(model, eqx.is_inexact_array) # 仅筛选浮点数组参数
)
这种处理方式更加精确,避免了因参数类型混淆导致的优化问题,同时也符合JAX新版的设计理念。
最佳实践建议
-
版本兼容性:对于示例代码,建议在pyproject.toml中明确指定依赖包的兼容版本范围,特别是像imageio这样即将发生重大变更的库。
-
参数过滤:在使用JAX进行优化时,始终明确指定需要更新的参数类型,避免隐式假设带来的兼容性问题。
-
错误处理:对于即将弃用的API,即使当前版本仍能工作,也应尽早适配新API,减少未来维护成本。
通过这些调整,可以确保Diffrax中的CNF示例在不同环境下都能稳定运行,同时也为其他基于JAX的项目提供了处理类似问题的参考方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00