Diffrax项目中不同微分方程求解器的内存效率对比分析
2025-07-10 10:52:31作者:韦蓉瑛
背景介绍
在微分方程数值求解领域,JAX生态中的Diffrax项目提供了多种求解器和伴随微分方法。本文将通过具体案例,分析比较不同求解方法在内存效率上的表现,特别是针对恒定步长情况下的优化选择。
测试方法与实现
我们构建了一个二维ODE系统作为测试案例:
def ode_funct(t, v, args):
    x = jnp.cos(v.y) * t**2
    y = jnp.sin(v.x) * t**2 
    return ODEField(x, y)
测试比较了五种实现方式:
- Diffrax的递归检查点伴随法(RecursiveCheckpointAdjoint)
 - Diffrax的反向求解伴随法(BacksolveAdjoint)
 - 原生JAX的lax.scan实现
 - Equinox的检查点扫描实现
 - 带检查点的JAX实现
 
内存效率分析
通过测量各方法的内存占用(residual size),我们得到以下数据:
| 方法类型 | 内存占用(字节) | 
|---|---|
| Diffrax递归检查点 | 961 | 
| Diffrax反向求解 | 156 | 
| JAX原生scan | 16000 | 
| Equinox检查点scan | 29048 | 
| 带检查点的JAX实现 | 12000 | 
关键发现
- 
Diffrax的伴随方法优势明显:两种Diffrax伴随方法都展现出极高的内存效率,特别是反向求解伴随法仅需156字节。
 - 
检查点策略的影响:Equinox的检查点扫描实现反而比原生JAX占用更多内存,说明不当的检查点设置可能导致反效果。
 - 
恒定步长的特殊性:在恒定步长情况下,反向求解伴随法表现出最佳性能,这与变步长情况下的表现可能不同。
 
技术建议
对于开发者而言,在选择微分方程求解策略时:
- 优先考虑Diffrax提供的专业伴随方法,而非自行实现
 - 对于恒定步长问题,BacksolveAdjoint可能是最佳选择
 - 使用RecursiveCheckpointAdjoint时,需要合理设置checkpoints参数
 - 避免简单地将lax.scan作为默认选择,它可能带来不必要的内存开销
 
结论
Diffrax项目提供的专业微分方程求解器在内存效率上显著优于手动实现的方案。特别是在恒定步长情况下,BacksolveAdjoint表现出最优异的性能。开发者应当根据具体问题特性,选择最适合的求解器和伴随方法组合,以获得最佳的性能和内存效率平衡。
这一发现对于需要长时间积分或处理大规模微分方程系统的应用尤为重要,合理的选择可以显著降低计算资源需求,提高整体求解效率。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443