探秘CrossFormer++:跨尺度注意力的视觉Transformer新星
在计算机视觉领域,Transformer模型已经成为研究焦点,尤其是对于图像识别、目标检测和语义分割等任务。近期,由作者Wenxiao Wang等人提出的CrossFormer++,在IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)上被接受发表。该模型以其创新的跨尺度注意力机制,解决了现有视觉Transformer中忽视不同尺度特征交互的问题。
项目简介
CrossFormer++ 是一种多功能的视觉Transformer,其核心在于引入了两种关键设计:交叉尺度嵌入层(Cross-scale Embedding Layer, CEL)和长短距离注意力(Long-Short Distance Attention, L/SDA)。配合动态位置偏移(Dynamic Position Bias, DPB)模块,CrossFormer++不仅实现了跨尺度注意力,还能够适应不同尺寸的输入图像。在最新版本中,CrossFormer++更进一步,通过渐进式组大小策略(Progressive Group Size, PGS)优化计算效率,并采用激活冷却层(Activation Cooling Layer, ACL)控制激活值的增长,从而提高了模型性能与资源消耗之间的平衡。
技术分析
- CEL 将输入嵌入与多尺度特征融合,增强了模型对复杂场景的理解。
- L/SDA 分组进行自注意力计算,使得同一组内的特征可以在局部空间内相互影响,而跨组的注意力则负责长距离的信息传递。
- DPB 则让相对位置偏移能适应不同图像尺寸,确保了模型的灵活性。
在CrossFormer++中,PGS策略与ACL层的加入,使得模型在保持高性能的同时,降低了计算成本,提升了实用性。
应用场景
CrossFormer++已在四大代表性的视觉任务上进行了实验:图像分类、目标检测、实例分割以及语义分割。结果表明,在这些任务中,尤其是在需要大量关注上下文信息的密集预测任务(如目标检测和实例/语义分割),CrossFormer++的表现优于现有的视觉Transformer。
项目特点
- 创新的注意力机制:结合CEL、L/SDA以及DPB,CrossFormer++构建了一种全新的跨尺度注意力模式,提高了对图像内容理解的深度和广度。
- 高效与灵活:使用PGS策略和ACL层,有效平衡了性能与计算需求,适配各种应用场景。
- 广泛的应用范围:已经成功应用于多个视觉任务,证明了其通用性。
- 易于使用:提供了详细的安装和训练指南,便于研究人员和开发者快速上手。
如果你想深入了解或应用这个项目,可以访问项目仓库,获取源代码并按照提供的说明开始你的探索之旅。无论是学术研究还是实际应用,CrossFormer++都是一个值得尝试的强大工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00