首页
/ 探秘CrossFormer++:跨尺度注意力的视觉Transformer新星

探秘CrossFormer++:跨尺度注意力的视觉Transformer新星

2024-05-21 11:31:33作者:史锋燃Gardner

在计算机视觉领域,Transformer模型已经成为研究焦点,尤其是对于图像识别、目标检测和语义分割等任务。近期,由作者Wenxiao Wang等人提出的CrossFormer++,在IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)上被接受发表。该模型以其创新的跨尺度注意力机制,解决了现有视觉Transformer中忽视不同尺度特征交互的问题。

项目简介

CrossFormer++ 是一种多功能的视觉Transformer,其核心在于引入了两种关键设计:交叉尺度嵌入层(Cross-scale Embedding Layer, CEL)和长短距离注意力(Long-Short Distance Attention, L/SDA)。配合动态位置偏移(Dynamic Position Bias, DPB)模块,CrossFormer++不仅实现了跨尺度注意力,还能够适应不同尺寸的输入图像。在最新版本中,CrossFormer++更进一步,通过渐进式组大小策略(Progressive Group Size, PGS)优化计算效率,并采用激活冷却层(Activation Cooling Layer, ACL)控制激活值的增长,从而提高了模型性能与资源消耗之间的平衡。

技术分析

  • CEL 将输入嵌入与多尺度特征融合,增强了模型对复杂场景的理解。
  • L/SDA 分组进行自注意力计算,使得同一组内的特征可以在局部空间内相互影响,而跨组的注意力则负责长距离的信息传递。
  • DPB 则让相对位置偏移能适应不同图像尺寸,确保了模型的灵活性。

在CrossFormer++中,PGS策略与ACL层的加入,使得模型在保持高性能的同时,降低了计算成本,提升了实用性。

应用场景

CrossFormer++已在四大代表性的视觉任务上进行了实验:图像分类、目标检测、实例分割以及语义分割。结果表明,在这些任务中,尤其是在需要大量关注上下文信息的密集预测任务(如目标检测和实例/语义分割),CrossFormer++的表现优于现有的视觉Transformer。

项目特点

  • 创新的注意力机制:结合CEL、L/SDA以及DPB,CrossFormer++构建了一种全新的跨尺度注意力模式,提高了对图像内容理解的深度和广度。
  • 高效与灵活:使用PGS策略和ACL层,有效平衡了性能与计算需求,适配各种应用场景。
  • 广泛的应用范围:已经成功应用于多个视觉任务,证明了其通用性。
  • 易于使用:提供了详细的安装和训练指南,便于研究人员和开发者快速上手。

如果你想深入了解或应用这个项目,可以访问项目仓库,获取源代码并按照提供的说明开始你的探索之旅。无论是学术研究还是实际应用,CrossFormer++都是一个值得尝试的强大工具。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5