Apache HoraedB 中的表压缩功能集成测试实践
2025-06-28 15:30:50作者:郁楠烈Hubert
背景介绍
Apache HoraedB 作为一款高性能的时序数据库,其存储引擎采用了基于LSM树的结构设计。在这种架构下,数据首先被写入内存表(memtable),当达到一定阈值后会刷盘形成SST文件。随着数据不断写入和更新,系统中会产生大量SST文件,这时就需要通过压缩(compaction)操作来合并这些文件,优化存储空间并提升查询性能。
压缩功能的重要性
压缩是LSM树存储引擎中的关键操作,它主要解决以下几个问题:
- 空间放大问题:由于更新和删除操作会产生新的SST文件,导致旧数据仍然占用空间
- 读放大问题:查询时需要检查多个SST文件,影响读取性能
- 写放大问题:反复重写数据带来的额外I/O开销
在HoraedB中,压缩操作通常由后台线程自动触发,但在某些场景下,用户可能需要手动触发压缩以获得即时的性能优化。
集成测试方案设计
为了确保压缩功能的正确性和可靠性,我们需要设计一套完整的集成测试方案。测试流程如下:
- 创建测试表结构
- 插入初始测试数据
- 执行刷盘操作将内存数据持久化为SST文件
- 更新部分数据以产生需要压缩的条件
- 再次执行刷盘操作
- 手动触发压缩操作
- 验证压缩结果是否符合预期
手动压缩命令的实现
在HoraedB的SQL接口中,我们新增了COMPACT命令来支持手动触发压缩操作。这个命令的设计与现有的FLUSH命令保持了一致性:
FLUSH命令:强制将内存中的数据写入SST文件COMPACT命令:强制触发SST文件的合并优化
这种对称设计使得用户能够以相似的语法控制数据的持久化和优化过程,降低了学习成本。
测试验证方法
在验证压缩效果时,我们主要关注以下几个方面:
- 文件数量变化:压缩后SST文件数量应显著减少
- 存储空间占用:压缩后总存储空间应有所下降
- 查询性能:压缩后的查询延迟应有改善
- 数据一致性:确保压缩前后数据内容完全一致
实现细节与挑战
在实际实现过程中,我们遇到了一些技术挑战:
- 压缩进度监控:最初考虑添加状态查询功能,但为了简化设计暂时移除
- 并发控制:需要确保压缩过程中不影响正常的读写操作
- 资源限制:压缩是I/O密集型操作,需要合理控制资源使用
- 异常处理:处理压缩过程中可能出现的各种错误情况
最佳实践建议
基于我们的测试经验,给出以下使用建议:
- 在批量导入大量数据后,可以手动触发压缩以获得最佳存储效率
- 在系统空闲时段执行压缩操作,避免影响业务高峰期性能
- 监控压缩操作的资源消耗,避免影响正常服务
- 对于关键业务表,可以设置更积极的自动压缩策略
总结
通过实现手动压缩功能并建立完整的集成测试体系,我们显著提升了HoraedB存储引擎的可靠性和可操作性。这套测试方案不仅验证了基本功能的正确性,也为后续的性能优化提供了基准。未来我们将继续完善压缩策略,在保证系统稳定性的同时进一步提升存储效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869