Apache HoraedB 中的表压缩功能集成测试实践
2025-06-28 15:30:50作者:郁楠烈Hubert
背景介绍
Apache HoraedB 作为一款高性能的时序数据库,其存储引擎采用了基于LSM树的结构设计。在这种架构下,数据首先被写入内存表(memtable),当达到一定阈值后会刷盘形成SST文件。随着数据不断写入和更新,系统中会产生大量SST文件,这时就需要通过压缩(compaction)操作来合并这些文件,优化存储空间并提升查询性能。
压缩功能的重要性
压缩是LSM树存储引擎中的关键操作,它主要解决以下几个问题:
- 空间放大问题:由于更新和删除操作会产生新的SST文件,导致旧数据仍然占用空间
- 读放大问题:查询时需要检查多个SST文件,影响读取性能
- 写放大问题:反复重写数据带来的额外I/O开销
在HoraedB中,压缩操作通常由后台线程自动触发,但在某些场景下,用户可能需要手动触发压缩以获得即时的性能优化。
集成测试方案设计
为了确保压缩功能的正确性和可靠性,我们需要设计一套完整的集成测试方案。测试流程如下:
- 创建测试表结构
- 插入初始测试数据
- 执行刷盘操作将内存数据持久化为SST文件
- 更新部分数据以产生需要压缩的条件
- 再次执行刷盘操作
- 手动触发压缩操作
- 验证压缩结果是否符合预期
手动压缩命令的实现
在HoraedB的SQL接口中,我们新增了COMPACT
命令来支持手动触发压缩操作。这个命令的设计与现有的FLUSH
命令保持了一致性:
FLUSH
命令:强制将内存中的数据写入SST文件COMPACT
命令:强制触发SST文件的合并优化
这种对称设计使得用户能够以相似的语法控制数据的持久化和优化过程,降低了学习成本。
测试验证方法
在验证压缩效果时,我们主要关注以下几个方面:
- 文件数量变化:压缩后SST文件数量应显著减少
- 存储空间占用:压缩后总存储空间应有所下降
- 查询性能:压缩后的查询延迟应有改善
- 数据一致性:确保压缩前后数据内容完全一致
实现细节与挑战
在实际实现过程中,我们遇到了一些技术挑战:
- 压缩进度监控:最初考虑添加状态查询功能,但为了简化设计暂时移除
- 并发控制:需要确保压缩过程中不影响正常的读写操作
- 资源限制:压缩是I/O密集型操作,需要合理控制资源使用
- 异常处理:处理压缩过程中可能出现的各种错误情况
最佳实践建议
基于我们的测试经验,给出以下使用建议:
- 在批量导入大量数据后,可以手动触发压缩以获得最佳存储效率
- 在系统空闲时段执行压缩操作,避免影响业务高峰期性能
- 监控压缩操作的资源消耗,避免影响正常服务
- 对于关键业务表,可以设置更积极的自动压缩策略
总结
通过实现手动压缩功能并建立完整的集成测试体系,我们显著提升了HoraedB存储引擎的可靠性和可操作性。这套测试方案不仅验证了基本功能的正确性,也为后续的性能优化提供了基准。未来我们将继续完善压缩策略,在保证系统稳定性的同时进一步提升存储效率。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193