Aequitas 开源项目教程
2024-09-13 21:06:10作者:鲍丁臣Ursa
项目介绍
Aequitas 是一个开源的公平性评估工具,旨在帮助数据科学家和机器学习从业者评估和改进其模型的公平性。该项目由 Data Science for Social Good (DSSG) 团队开发,旨在提供一个易于使用的框架,用于检测和减轻模型中的偏见。Aequitas 支持多种公平性指标,并提供可视化工具来帮助用户理解和解释结果。
项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 Aequitas:
pip install aequitas
快速示例
以下是一个简单的示例,展示如何使用 Aequitas 评估模型的公平性。
import pandas as pd
from aequitas.group import Group
from aequitas.bias import Bias
from aequitas.fairness import Fairness
# 假设你已经有了一个预测结果的 DataFrame
# 包含 'score', 'label_value', 'protected_attribute' 等列
df = pd.read_csv('predictions.csv')
# 初始化 Group 类
g = Group()
xtab, _ = g.get_crosstabs(df)
# 初始化 Bias 类
b = Bias()
bias_df = b.get_disparity_predefined_groups(xtab, original_df=df,
ref_groups_dict={'protected_attribute': 'reference_group'},
alpha=0.05, mask_significance=True)
# 初始化 Fairness 类
f = Fairness()
fairness_df = f.get_group_value_fairness(bias_df)
# 打印结果
print(fairness_df)
应用案例和最佳实践
应用案例
Aequitas 可以应用于各种领域,如金融、招聘、司法等,帮助评估和改进模型的公平性。例如,在招聘过程中,可以使用 Aequitas 来检测和减轻模型对不同性别或种族的偏见。
最佳实践
- 数据预处理:在评估模型公平性之前,确保数据已经过适当的预处理,去除潜在的偏见。
- 多维度评估:使用 Aequitas 提供的多种公平性指标,从不同维度评估模型的公平性。
- 持续监控:在模型部署后,持续使用 Aequitas 监控模型的公平性,及时发现和纠正偏见。
典型生态项目
1. Fairness Indicators
Fairness Indicators 是 Google 开发的一个工具,用于评估和改进机器学习模型的公平性。它与 Aequitas 类似,提供了多种公平性指标和可视化工具。
2. AI Fairness 360
AI Fairness 360 是由 IBM 开发的一个开源工具包,提供了多种算法和工具,用于检测和减轻机器学习模型中的偏见。它与 Aequitas 可以相互补充,提供更全面的公平性评估解决方案。
3. Themis
Themis 是一个开源的公平性评估框架,专注于评估分类模型的公平性。它提供了多种公平性指标和评估方法,适用于各种应用场景。
通过结合这些生态项目,可以构建一个更全面、更强大的公平性评估和改进系统。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
214
234
暂无简介
Dart
661
151
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
294
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
491
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
80
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1