Aequitas:开源偏见审计与“校正”工具包
2024-09-17 23:28:46作者:薛曦旖Francesca
项目介绍
在人工智能和机器学习领域,偏见和公平性问题日益受到关注。为了帮助数据科学家、机器学习研究人员和政策制定者更好地应对这些挑战,我们推出了 Aequitas,一个开源的偏见审计和公平机器学习(Fair ML)工具包。Aequitas 提供了一个易于使用且透明的工具,用于审计机器学习模型的预测结果,并实验性地使用 Fair ML 方法来“校正”这些偏见。
Aequitas 不仅支持对模型进行深入的偏见审计,还允许用户通过 Fair ML 方法来减少模型中的偏见。最新版本 1.0.0 引入了 Aequitas Flow,这是一个优化公平性的新功能,旨在增强偏见审计并简化 Fair ML 方法的实验过程。
项目技术分析
Aequitas 的核心功能包括:
- 偏见审计:通过混淆矩阵相关的指标,对模型的预测结果进行全面的偏见审计。用户可以根据具体的使用场景选择重要的指标进行分析。
- Fair ML 方法:支持多种 Fair ML 方法,包括预处理、处理中和后处理方法。这些方法可以在不同的阶段对模型进行校正,以减少偏见。
- 实验与优化:Aequitas Flow 允许用户进行大规模的 Fair ML 实验,并集成了 Optuna 的超参数优化功能,帮助用户找到最佳的模型配置。
- 数据集支持:内置了两个“家族”的数据集,分别是 BankAccountFraud 和 FolkTables,方便用户快速上手。
项目及技术应用场景
Aequitas 适用于以下场景:
- 数据科学家:在进行模型开发时,可以使用 Aequitas 对模型进行偏见审计,确保模型的公平性。
- 机器学习研究人员:通过 Aequitas Flow 进行 Fair ML 方法的实验,探索不同方法对模型偏见的影响。
- 政策制定者:利用 Aequitas 提供的审计结果,制定更公平的 AI 政策和法规。
项目特点
Aequitas 具有以下显著特点:
- 易用性:提供直观的 API 和丰富的示例代码,用户可以快速上手进行偏见审计和 Fair ML 实验。
- 透明性:所有审计和校正过程都是透明的,用户可以清楚地了解每一步的操作和结果。
- 可扩展性:支持用户自定义 Fair ML 方法,并将其集成到 Aequitas Flow 中进行实验。
- 模块化:Fair ML 方法和数据集可以单独使用,也可以集成到实验中,灵活性高。
- 可重复性:实验结果可以保存为工件,确保实验的可重复性和结果的可追溯性。
结语
Aequitas 是一个强大的工具,旨在帮助用户在机器学习模型中识别和减少偏见。无论你是数据科学家、研究人员还是政策制定者,Aequitas 都能为你提供必要的工具和方法,确保你的模型更加公平和透明。立即安装 Aequitas,开始你的偏见审计和 Fair ML 之旅吧!
pip install aequitas
或者从 GitHub 安装最新版本:
pip install git+https://github.com/dssg/aequitas.git
更多详细信息和示例代码,请访问 Aequitas GitHub 仓库。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869