Py-Earth 项目教程
2024-09-13 01:37:59作者:秋泉律Samson
1. 项目介绍
Py-Earth 是一个基于 Python 实现的多元自适应回归样条(Multivariate Adaptive Regression Splines, MARS)算法库。它旨在提供与 scikit-learn 兼容的接口,使得用户可以方便地将 MARS 算法集成到现有的机器学习工作流中。Py-Earth 使用 Cython 进行优化,提供了高效的计算性能。
2. 项目快速启动
安装
首先,确保你已经安装了 numpy 和 scikit-learn。然后,按照以下步骤安装 Py-Earth:
git clone https://github.com/scikit-learn-contrib/py-earth.git
cd py-earth
sudo python setup.py install
使用示例
以下是一个简单的使用示例,展示了如何使用 Py-Earth 进行回归分析:
import numpy as np
from pyearth import Earth
from matplotlib import pyplot as plt
# 创建一些假数据
np.random.seed(0)
m = 1000
n = 10
X = 80 * np.random.uniform(size=(m, n)) - 40
y = np.abs(X[:, 6] - 4.0) + 1 * np.random.normal(size=m)
# 拟合一个 Earth 模型
model = Earth()
model.fit(X, y)
# 打印模型
print(model.trace())
print(model.summary())
# 绘制模型
y_hat = model.predict(X)
plt.figure()
plt.plot(X[:, 6], y, 'r.')
plt.plot(X[:, 6], y_hat, 'b.')
plt.xlabel('x_6')
plt.ylabel('y')
plt.title('简单 Earth 示例')
plt.show()
3. 应用案例和最佳实践
应用案例
Py-Earth 在处理非线性回归问题时表现出色。例如,在金融领域,可以使用 Py-Earth 来预测股票价格的变化趋势。在医疗领域,可以用于预测患者的疾病风险。
最佳实践
- 数据预处理:在使用 Py-Earth 之前,确保数据已经过适当的预处理,如标准化、归一化等。
- 模型调优:通过调整模型的参数(如
max_terms、max_degree等)来优化模型的性能。 - 交叉验证:使用交叉验证来评估模型的泛化能力,避免过拟合。
4. 典型生态项目
Py-Earth 可以与以下生态项目结合使用,以增强其功能:
- scikit-learn:Py-Earth 提供了与 scikit-learn 兼容的接口,可以无缝集成到 scikit-learn 的工作流中。
- pandas:使用 pandas 进行数据处理和分析,可以更方便地准备数据。
- matplotlib 和 seaborn:用于数据可视化,帮助理解模型的输出和数据分布。
通过这些生态项目的结合,Py-Earth 可以更好地应用于各种复杂的机器学习任务中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355