首页
/ Trajectron++ 项目使用教程

Trajectron++ 项目使用教程

2024-09-18 18:15:18作者:宣利权Counsellor

1. 项目介绍

Trajectron++ 是一个用于动态可行轨迹预测的模块化图结构递归模型。它能够预测多种异构数据(如语义地图)下的轨迹,并且紧密集成于机器人规划和控制系统中。Trajectron++ 在多个真实世界的轨迹预测数据集上表现出色,超越了许多现有的确定性和生成性方法。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 conda 环境管理工具。然后,创建并激活一个新的 conda 环境:

conda create --name trajectron++ python=3.6 -y
source activate trajectron++

2.2 安装依赖

安装项目所需的依赖包:

pip install -r requirements.txt

2.3 克隆项目

克隆 Trajectron++ 项目到本地,并初始化子模块:

git clone --recurse-submodules https://github.com/StanfordASL/Trajectron-plus-plus.git
cd Trajectron-plus-plus

2.4 数据准备

2.4.1 行人数据集

项目中已经包含了预处理的 ETH 和 UCY 行人数据集,位于 experiments/pedestrians/raw 目录下。你可以直接使用这些数据进行训练和评估。

2.4.2 nuScenes 数据集

下载 nuScenes 数据集(需要在其官网注册),并将其解压到 experiments/nuScenes 目录下。然后,下载地图扩展包(v1.1),并将解压后的 maps 文件夹内容复制到 experiments/nuScenes/v1.0-mini/maps 目录下。

2.5 模型训练

2.5.1 行人数据集训练

使用以下命令在 ETH 和 UCY 数据集上训练模型:

python train.py --eval_every 10 --vis_every 1 --train_data_dict eth_train.pkl --eval_data_dict eth_val.pkl --offline_scene_graph yes --preprocess_workers 5 --log_dir ./experiments/pedestrians/models --log_tag _eth_vel_ar3 --train_epochs 100 --augment --conf ./experiments/pedestrians/models/eth_vel/config.json

2.5.2 nuScenes 数据集训练

使用以下命令在 nuScenes 数据集上训练模型:

python train.py --eval_every 1 --vis_every 1 --conf ./experiments/nuScenes/models/vel_ee/config.json --train_data_dict nuScenes_train_full.pkl --eval_data_dict nuScenes_val_full.pkl --offline_scene_graph yes --preprocess_workers 10 --batch_size 256 --log_dir ./experiments/nuScenes/models --train_epochs 20 --node_freq_mult_train --log_tag _vel_ee --augment

3. 应用案例和最佳实践

3.1 自动驾驶中的轨迹预测

Trajectron++ 在自动驾驶领域中被广泛应用于预测周围车辆和行人的轨迹,从而帮助自动驾驶系统做出更安全的决策。通过结合地图信息和动态数据,Trajectron++ 能够生成更加准确和动态可行的轨迹预测。

3.2 机器人导航

在机器人导航中,Trajectron++ 可以帮助机器人预测周围环境中其他移动物体(如行人、车辆)的轨迹,从而避免碰撞并规划出更安全的导航路径。

4. 典型生态项目

4.1 nuScenes 数据集

nuScenes 是一个大规模的自动驾驶数据集,包含了丰富的传感器数据和标注信息。Trajectron++ 在其上进行了广泛的测试和验证,展示了其在真实世界数据上的强大性能。

4.2 ETH 和 UCY 行人数据集

ETH 和 UCY 数据集是行人轨迹预测领域的经典数据集,Trajectron++ 在这些数据集上也表现出色,证明了其在不同场景下的适应性和鲁棒性。

通过以上步骤,你可以快速上手 Trajectron++ 项目,并在实际应用中进行轨迹预测任务。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0