首页
/ Trajectron++ 项目使用教程

Trajectron++ 项目使用教程

2024-09-18 18:15:18作者:宣利权Counsellor

1. 项目介绍

Trajectron++ 是一个用于动态可行轨迹预测的模块化图结构递归模型。它能够预测多种异构数据(如语义地图)下的轨迹,并且紧密集成于机器人规划和控制系统中。Trajectron++ 在多个真实世界的轨迹预测数据集上表现出色,超越了许多现有的确定性和生成性方法。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 conda 环境管理工具。然后,创建并激活一个新的 conda 环境:

conda create --name trajectron++ python=3.6 -y
source activate trajectron++

2.2 安装依赖

安装项目所需的依赖包:

pip install -r requirements.txt

2.3 克隆项目

克隆 Trajectron++ 项目到本地,并初始化子模块:

git clone --recurse-submodules https://github.com/StanfordASL/Trajectron-plus-plus.git
cd Trajectron-plus-plus

2.4 数据准备

2.4.1 行人数据集

项目中已经包含了预处理的 ETH 和 UCY 行人数据集,位于 experiments/pedestrians/raw 目录下。你可以直接使用这些数据进行训练和评估。

2.4.2 nuScenes 数据集

下载 nuScenes 数据集(需要在其官网注册),并将其解压到 experiments/nuScenes 目录下。然后,下载地图扩展包(v1.1),并将解压后的 maps 文件夹内容复制到 experiments/nuScenes/v1.0-mini/maps 目录下。

2.5 模型训练

2.5.1 行人数据集训练

使用以下命令在 ETH 和 UCY 数据集上训练模型:

python train.py --eval_every 10 --vis_every 1 --train_data_dict eth_train.pkl --eval_data_dict eth_val.pkl --offline_scene_graph yes --preprocess_workers 5 --log_dir ./experiments/pedestrians/models --log_tag _eth_vel_ar3 --train_epochs 100 --augment --conf ./experiments/pedestrians/models/eth_vel/config.json

2.5.2 nuScenes 数据集训练

使用以下命令在 nuScenes 数据集上训练模型:

python train.py --eval_every 1 --vis_every 1 --conf ./experiments/nuScenes/models/vel_ee/config.json --train_data_dict nuScenes_train_full.pkl --eval_data_dict nuScenes_val_full.pkl --offline_scene_graph yes --preprocess_workers 10 --batch_size 256 --log_dir ./experiments/nuScenes/models --train_epochs 20 --node_freq_mult_train --log_tag _vel_ee --augment

3. 应用案例和最佳实践

3.1 自动驾驶中的轨迹预测

Trajectron++ 在自动驾驶领域中被广泛应用于预测周围车辆和行人的轨迹,从而帮助自动驾驶系统做出更安全的决策。通过结合地图信息和动态数据,Trajectron++ 能够生成更加准确和动态可行的轨迹预测。

3.2 机器人导航

在机器人导航中,Trajectron++ 可以帮助机器人预测周围环境中其他移动物体(如行人、车辆)的轨迹,从而避免碰撞并规划出更安全的导航路径。

4. 典型生态项目

4.1 nuScenes 数据集

nuScenes 是一个大规模的自动驾驶数据集,包含了丰富的传感器数据和标注信息。Trajectron++ 在其上进行了广泛的测试和验证,展示了其在真实世界数据上的强大性能。

4.2 ETH 和 UCY 行人数据集

ETH 和 UCY 数据集是行人轨迹预测领域的经典数据集,Trajectron++ 在这些数据集上也表现出色,证明了其在不同场景下的适应性和鲁棒性。

通过以上步骤,你可以快速上手 Trajectron++ 项目,并在实际应用中进行轨迹预测任务。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
438
335
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
96
171
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
273
443
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
51
116
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
342
222
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
344
34
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
88
243
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
559
39
carboncarbon
轻量级、语义化、对开发者友好的 golang 时间处理库
Go
7
2